20 research outputs found

    Bearing remaining life prediction using Gaussian process regression with composite kernel functions

    Get PDF
    There is an urgent demand for life prediction of bearing in industry. Effective bearing degradation assessment technique is beneficial to condition based maintenance (CBM). In this paper, Gaussian Process Regression (GPR) is used for remaining bearing life prediction. Three main steps of prediction schedule are presented in details. RMS, Kurtosis and Crest factor are used for feature fusion by self-organizing map (SOM). Minimum Quantization Error (MQE) value derived from SOM is applied to represent the condition of bearing. GPR models with both single and composite covariance functions are presented. After training, new MQE value can be predicted by the GPR model according to previous data points. Experimental results show that composite kernels improve the accuracy and reduce the variance of prediction results. Compared with particle filter (PF), GPR model can predict the remaining life of bearings more accurately

    Bearing remaining life prediction using Gaussian process regression with composite kernel functions

    Get PDF
    There is an urgent demand for life prediction of bearing in industry. Effective bearing degradation assessment technique is beneficial to condition based maintenance (CBM). In this paper, Gaussian Process Regression (GPR) is used for remaining bearing life prediction. Three main steps of prediction schedule are presented in details. RMS, Kurtosis and Crest factor are used for feature fusion by self-organizing map (SOM). Minimum Quantization Error (MQE) value derived from SOM is applied to represent the condition of bearing. GPR models with both single and composite covariance functions are presented. After training, new MQE value can be predicted by the GPR model according to previous data points. Experimental results show that composite kernels improve the accuracy and reduce the variance of prediction results. Compared with particle filter (PF), GPR model can predict the remaining life of bearings more accurately

    Impact of sudden stratospheric warmings on the neutral density, temperature and wind in the MLT region

    Get PDF
    In this study, the neutral density and horizontal wind observed by the four meteor radars, as well as the temperature measured by the Microwave Limb Sounder (MLS) onboard the Aura satellite are used to examine the response of neutral density, wind, and temperature in the MLT region to the stratospheric sudden warmings (SSWs) during 2005 to 2021 in the Northern Hemisphere. The four meteor radars include the Svalbard (78.3°N, 16°E) and Tromsø (69.6°N, 19.2°E) meteor radars at high latitudes and the Mohe (53.5°N, 122.3°E) and Beijing (40.3°N, 116.2°E) meteor radars at middle latitudes. The superposed epoch analysis results indicate that: 1) the neutral density over Svalbard and Tromsø at high latitude increased at the beginning of SSWs and decreased after the zonal mean stratospheric temperature reached the maximum. However, the neutral density over Mohe at midlatitudes decreased in neutral density at the beginning of SSW and increase after the zonal mean stratospheric temperature reached the maximum. 2) The zonal wind at high latitudes show a westward enhancement at the beginning of SSWs and then shows an eastward enhancement after the stratospheric temperature reaches maximum. However, the zonal wind at midlatitudes shows an opposite variation to at high latitudes, with an eastward enhancement at the onset and changing to westward enhancements after the stratospheric temperature maximum. The meridional winds at high and midlatitudes show a southward enhancement after the onset of SSW and then show a northward enhancement after the stratospheric temperature maximum. 3) In general, the temperature in the MLT region decreased throughout SSWs. However, as the latitudes decrease, the temperature cooling appears to lag a few days to the higher latitudes, and the degree of cooling will decrease relatively

    Impact of sudden stratospheric warmings on the neutral density, temperature and wind in the MLT region

    Get PDF
    In this study, the neutral density and horizontal wind observed by the four meteor radars, as well as the temperature measured by the Microwave Limb Sounder (MLS) onboard the Aura satellite are used to examine the response of neutral density, wind, and temperature in the MLT region to the stratospheric sudden warmings (SSWs) during 2005 to 2021 in the Northern Hemisphere. The four meteor radars include the Svalbard (78.3°N, 16°E) and Tromsø (69.6°N, 19.2°E) meteor radars at high latitudes and the Mohe (53.5°N, 122.3°E) and Beijing (40.3°N, 116.2°E) meteor radars at middle latitudes. The superposed epoch analysis results indicate that: 1) the neutral density over Svalbard and Tromsø at high latitude increased at the beginning of SSWs and decreased after the zonal mean stratospheric temperature reached the maximum. However, the neutral density over Mohe at midlatitudes decreased in neutral density at the beginning of SSW and increase after the zonal mean stratospheric temperature reached the maximum. 2) The zonal wind at high latitudes show a westward enhancement at the beginning of SSWs and then shows an eastward enhancement after the stratospheric temperature reaches maximum. However, the zonal wind at midlatitudes shows an opposite variation to at high latitudes, with an eastward enhancement at the onset and changing to westward enhancements after the stratospheric temperature maximum. The meridional winds at high and midlatitudes show a southward enhancement after the onset of SSW and then show a northward enhancement after the stratospheric temperature maximum. 3) In general, the temperature in the MLT region decreased throughout SSWs. However, as the latitudes decrease, the temperature cooling appears to lag a few days to the higher latitudes, and the degree of cooling will decrease relatively

    Reliability Modelling and Evaluation for LTD System Based on Load-Sharing Model

    No full text
    Based on power adding technology, the linear transformer driver (LTD) scheme is widely used to generate high-energy pulsed outputs and adopts a hierarchical and modular structure. Although robust design and fault analysis for basic components have been conducted recently, there is still a lack of enough reliability analysis studies of the whole system. Taking an actual LTD system as an object, this paper presents a system reliability model based on a load-sharing mechanism. A unified load-sharing rule structure is established and four typical rules corresponding to equal, linear, exponential, and local-equal relationships are discussed in detail while evaluating the impact of the load-sharing mechanism. Subsequently, simulation experiments are performed to illustrate the effects of different load-sharing rules as well as analyzing the system reliability in which we simultaneously propose a self-adaptive Monte Carlo simulation flow to achieve the sampling probability adjustment according to the random failure sequence. The simulation results can serve as a suggestion for further improvement of the system reliability. Moreover, the model framework and the simulation analysis method described here are universal and can be applied to evaluate the reliability of other LTD-based systems with tiny modifications

    Sensitivity of the quasi‐biennial oscillation simulated in WACCM to the phase speed spectrum and the settings in an inertial gravity wave parameterization

    No full text
    Abstract The application of inertial gravity wave parameterization has allowed for the spontaneous generation of quasi‐biennial oscillation (QBO) in the Whole Atmosphere Community Climate Model (WACCM), although there is some mismatch when comparing with observations. The parameterization is based on Lindzen's linear saturation theory, modified to describe inertia‐gravity waves (IGW) by considering the Coriolis effect. In this work, we improve the parameterization by importing a more realistic IGW phase speed spectrum that exhibits a double peak Gaussian distribution calculated from tropical radiosonde observations. A series of numeric simulations are performed to test the sensitivity of QBO‐like oscillation features to the phase speed spectrum and the settings of parameterized IGW. All these simulations are capable of generating equatorial wind oscillations in the stratosphere based on standard spatial resolution settings. Central phase speeds of the “double‐Gaussian parameterization” affect QBO magnitudes and periods, and the momentum flux of IGW determines the acceleration rate of zonal wind. Furthermore, stronger IGW forcing can lead to a propagation of the QBO‐like oscillation to lower altitude. The intermittency factor of the parameterization also prominently affects the QBO period. Stratospheric QBO‐like oscillation with obvious improvements is generated using the new IGW parameterization in a long‐time simulation

    Study on the Parameters of Ice Clouds Based on 1.5 µm Micropulse Polarization Lidar

    No full text
    Dust aerosols can participate in the heterogeneous nucleation process as effective ice nucleation particles, thus changing the physical properties of clouds. In this paper, we used an eye-safe 1550 nm micropulse polarization single photon lidar combined with meteorological stations, HYSPLIT backward trajectory analysis, ERA5 reanalysis data, CALIPSO, Himawari-8 and Terra-MODIS satellite data to compare the difference in cloud characteristics between dust and clean cirrus cases in Jinan from 26–29 March 2022. The study found that the aerosol affected the cloud effective radius, and the cloud top temperature impacted the properties of depolarization of dust ice clouds. According to the statistical results of the upper and lower quartiles, the depolarization ratio (DPR) range of dust cirrus on 26 March was 0.46–0.49, a similar range to the clean cirrus, while that of dust cirrus on 27 March was 0.54–0.59, which seemed much larger. Different height and temperature conditions lead to differences in the habits of ice crystals in clouds, thus changing the DPR. However, the range of the DPR between clean cirrus and dust cirrus showed no obvious difference, as the former was 0.43–0.53 and the latter was 0.46–0.59. Under the condition of higher aerosol loading, the lidar range-corrected signal (RCS) of cirrus clouds was stronger, and the cloud effective radius was 48 μm, larger than that of clean cirrus (32 μm). This may be the effect of dust on the microphysical properties of clouds. This study discusses the indirect effects of dust aerosols on cirrus clouds and the underlying mechanisms from the perspectives of microphysics and optics, which can provide more references for urban air pollution processes and aerosol-cloud interactions

    Comparison between the Mesospheric Winds Observed by Two Collocated Meteor Radars at Low Latitudes

    No full text
    This study compares the hourly mesospheric horizontal winds observed by two collocated and independent low-latitude meteor radars operating at 37.5 MHz and 53.1 MHz in Kunming, China (25.6°N, 103.8°E). Upon analyzing simultaneously detected meteor echoes, we find a fixed angular deviation between the baselines of the two meteor radar antenna arrays within the east–north–up coordinate system. Then, we correct the deviation in the antenna azimuth direction using a novel method and recalculate the horizontal zonal and meridional winds. A comparison of the results before and after the correction shows strong consistency between the winds observed by both meteor radars within the entire detection altitude range. Furthermore, we summarize the performance of different techniques for measuring mesospheric winds. Ultimately, our statistical analysis approach allows the uncertainties associated with meteor radar wind observations to be more precisely estimated

    Observed Quasi 16-Day Wave by Meteor Radar over 9 Years at Mengcheng (33.4°N, 116.5°E) and Comparison with the Whole Atmosphere Community Climate Model Simulation

    No full text
    In this study, we present nearly 9 years of the quasi16-day wave (Q16DW) in the mesosphere and lower thermosphere (MLT) wind at middle latitudes based on long-term wind observations between April 2014 and December 2022 by the Mengcheng (33.4°N, 116.5°E) meteor radar. There are two maxima in the Q16DW amplitude in the winter and early spring (near the equinox) and a minimum during the summer. The Q16DWs are relatively weak in meridional winds with no obvious seasonal variations. On average, the phase of the zonal Q16DW is larger than the meridional components with a mean difference that is slightly less than 90°, which suggests that there are orthogonal relationships between them. During the bursts of Q16DW, the periods in winter range between 15 and 18 d, whereas in summer, the periods of the planetary waves have a wider range. The wintertime Q16DW anomalies are, on average, amplified when the zonal wind shear anomalies increase, suggesting that barotropic instability may be a source of the Q16DW. Although the interannual variability of Q16DW amplitudes has been suggested observationally, there is no significant relationship between the interannual wind shear variability and Q16DW at most altitudes
    corecore