240 research outputs found

    Engineering Holographic Superconductor Phase Diagrams

    Get PDF
    We study how to engineer holographic models with features of a high temperature superconductor phase diagram. We introduce a field in the bulk which provides a tunable "doping" parameter in the boundary theory. By designing how this field changes the effective masses of other order parameter fields, desired phase diagrams can be engineered. We give examples of generating phase diagrams with phase boundaries similar to a superconducting dome and an anti-ferromagnetic phase by including two order parameter fields. We also explore whether the pseudo gap phase can be described without adding another order parameter field and discuss the potential scaling symmetry associated with a quantum critical point hidden under the superconducting dome in this phase diagram.Comment: 25 pages, 7 figure

    Towards Searching for Entangled Photons in the CMB Sky

    Full text link
    We explore the possibility of detecting entangled photon pairs from cosmic microwave background or other cosmological sources coming from two patches of the sky. The measurements use two detectors with different photon polarizer directions. When two photon sources are separated by a large angle relative to the earth, such that each detector has only one photon source in its field of view, a null test of unentangled photons can be performed. The deviation from this unentangled background is, in principle, the signature of photon entanglement. To confirm whether the deviation is consistent with entangled photons, we derive a photon polarization correlation to compare with, similar to that in a Bell inequality measurement. However, since photon coincidence measurement cannot be used to discriminate unentangled cosmic photons, it is unlikely that the correlation expectation value alone can violate Bell inequality to provide the signature for entanglement.Comment: 5 pages, 2 figure; references added, typos fixed. v3 revised version with more discussions on detection possibilities; added references.v4 published version in PR

    Uniqueness and structure of solutions to the Dirichlet problem for an elliptic system

    Get PDF
    AbstractIn this paper, we consider the Dirichlet problem for an elliptic system on a ball in R2. By investigating the properties for the corresponding linearized equations of solutions, and adopting the Pohozaev identity and Implicit Function Theorem, we show the uniqueness and the structure of solutions

    Interaction effects of pseudospin-based magnetic monopoles and kinks in a doped dipolar superlattice gas

    Full text link
    Magnetic monopoles and kinks are topological excitations extensively investigated in quantum spin systems, but usually they are studied in different setups. We explore the conditions for the coexistence and the interaction effects of these quasiparticles in the pseudospin chain of the atomic dipolar superlattice gas. In this chain, the magnetic kink is the intrinsic quasiparticle, and the particle/hole defect takes over the role of the north/south magnetic monopole, exerting monopolar magnetic fields to neighboring spins. A confinement effect between the monopole and kink is revealed, which renormalizes the dispersion of the kink. The corresponding dynamical deconfinement process is observed and arises due to the kink-antikink annihilation. The rich interaction effects of the two quasiparticles could stimulate corresponding investigations in bulk spin systems

    Magnetic monopole induced polarons in atomic superlattices

    Full text link
    Magnetic monopoles have been realized as emergent quasiparticles in both condensed matter and ultracold atomic platforms, with growing interests in the coupling effects between the monopole and different magnetic quasiparticles. In this work, interaction effects between monopoles and magnons are investigated for an atomic pseudospin chain. We reveal that the monopole can excite a virtual magnon cloud in the paramagnetic chain, thereby giving rise to a new type of polaron, the monopole-cored polaron (McP). The McP is composed of the monopole as the impurity core and the virtual magnon excitation as the dressing cloud. The magnon dressing facilitates the Dirac string excitation and impacts the monopole hopping. This induces an anti-trapping effect of the McP, which refers to the fact that the dressing enhances the mobility of the McP, in contrast to the self-trapping of the common polarons. Moreover, heterogeneous bipolarons are shown to exist under the simultaneous doping of a north and a south monopole. The heterogeneous bipolaron possesses an inner degree of freedom composed of two identical impurities. Our investigation sheds light on the understanding of how the coupling between the impurity core and the dressing cloud can engineer the property of the polaro

    Manifold formation and crossings of ultracold lattice spinor atoms in the intermediate interaction regime

    Full text link
    Ultracold spinor atoms in the weak and strong interaction regime have received extensive investigations, while the behavior in the intermediate regime is less understood. We numerically investigate ultracold spinor atomic ensembles of finite size in the intermediate interaction regime, and reveal the evolution of the eigenstates from the strong to the intermediate regime. In the strong interaction regime, it has been well known that the low-lying eigenenergy spectrum presents the well-gaped multi-manifold structure, and the energy gaps protect the categorization of the eigenstates. In the intermediate interaction regime, it is found that the categorization of the eigenstates is preserved, and the eigenenergy spectrum become quasi-continuum, with different manifolds becoming overlapped. The overlapping induces both direct and avoided crossings between close-lying manifolds, which is determined by the combined symmetries of the eigenstates involved in the crossing. A modified t-J model is derived to describe the low-lying eigenstates in the intermediate regime, which can capture the formation and crossings of the manifolds. State preparation through the avoided crossings is also investigated.Comment: 8 pages,6 figure

    Critical Roles of STAT3 in β-Adrenergic Functions in the Heart

    Get PDF
    BACKGROUND: β-Adrenergic receptors (βARs) play paradoxical roles in the heart. On one hand, βARs augment cardiac performance to fulfill the physiological demands, but on the other hand, prolonged activations of βARs exert deleterious effects that result in heart failure. The signal transducer and activator of transcription 3 (STAT3) plays a dynamic role in integrating multiple cytokine signaling pathways in a number of tissues. Altered activation of STAT3 has been observed in failing hearts in both human patients and animal models. Our objective is to determine the potential regulatory roles of STAT3 in cardiac βAR-mediated signaling and function. METHODS AND RESULTS: We observed that STAT3 can be directly activated in cardiomyocytes by β-adrenergic agonists. To follow up this finding, we analyzed βAR function in cardiomyocyte-restricted STAT3 knockouts and discovered that the conditional loss of STAT3 in cardiomyocytes markedly reduced the cardiac contractile response to acute βAR stimulation, and caused disengagement of calcium coupling and muscle contraction. Under chronic β-adrenergic stimulation, Stat3cKO hearts exhibited pronounced cardiomyocyte hypertrophy, cell death, and subsequent cardiac fibrosis. Biochemical and genetic data supported that Gαs and Src kinases are required for βAR-mediated activation of STAT3. Finally, we demonstrated that STAT3 transcriptionally regulates several key components of βAR pathway, including β1AR, protein kinase A, and T-type Ca(2+) channels. CONCLUSIONS: Our data demonstrate for the first time that STAT3 has a fundamental role in βAR signaling and functions in the heart. STAT3 serves as a critical transcriptional regulator for βAR-mediated cardiac stress adaption, pathological remodeling, and heart failure
    corecore