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1. Introduction and main results

In this paper, we consider the following elliptic system

{
�u + ev(

1 − eu) = 4π N1δ0,

�v + eu(
1 − ev) = 4π N2δ0

(1.1)

in B R with boundary condition

(u, v) = (0,0) on ∂ B R , (1.2)

where � = ∑2
i=1

∂2

∂x2
i

, B R ⊂ R2 is the ball centered at the origin with radius R , N1 and N2 are two

positive constants, and δ0 is the Dirac measure at the origin. System (1.1) arises from the relativistic
Abelian Chern–Simons model with two Higgs particle. The related Chern–Simons problem with one
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Higgs particle has been intensively studied in the past twenty years, e.g., see [1–6,8–16,18–24]. For
deriving (1.1), we refer the readers to [7,15,17] and the references therein. Recently, Lin, Ponce and
Yang [17] has shown that for each R > 0, (1.1)–(1.2) possesses a solution.

Theorem A. (See [17].) For any R > 0, (1.1)–(1.2) possesses a solution (uR , v R). Furthermore, there exists
a sequence Ri → ∞ such that (uRi , v Ri ) → (u0, v0) in L1

loc(R2) × L1
loc(R2), where (u0, v0) is a topological

solution of (1.1) in R2 .

We note that an entire solution pair (u, v) of (1.1) satisfying the boundary condition

u(x) → 0, v(x) → 0 as |x| → ∞ (1.3)

is called a topological solution of (1.1). The purpose of this paper is to study the uniqueness and
structures of solutions for (1.1)–(1.2). Let (u, v) be a C2(B R \ {O }) solution of (1.1)–(1.2). Then by
maximum principle we will have u(x) < 0, v(x) < 0 for x ∈ B R \ {O }. Applying the method of moving
planes on system equations, we can show that (u, v) is radially symmetric with respect to the origin.
The proof is standard, and for the reader’s convenience, we present it in Appendix A after Section 2.
Therefore, we now study the structure of radial solutions for (1.1)–(1.2), i.e., (u(r), v(r)) satisfies the
following ODE system

⎧⎪⎨
⎪⎩

u′′(r) + 1

r
u′(r) + ev(r)(1 − eu(r)) = 4π N1δ0,

v ′′(r) + 1

r
v ′(r) + eu(r)(1 − ev(r)) = 4π N2δ0,

r > 0, (1.4)

with the boundary condition

u(R) = v(R) = 0. (1.5)

We note that if (u, v) is a solution of (1.4), then it is easy to get

{
u(r) = 2N1 log r + α1 + o(1),

v(r) = 2N2 log r + α2 + o(1)
as r → 0+ (1.6)

for some α = (α1,α2) ∈ R2. Denote the solution of (1.4) and (1.6) by (u(r,α), v(r,α)) or simply
(u(r), v(r)) when there is no confusion. Let

D = {
α

∣∣ (
u(r,α), v(r,α)

)
is a solution of (1.4)–(1.5) for some R > 0

}
. (1.7)

Our main result is the following.

Theorem 1.1. For any positive numbers N1, N2 and R, (1.1)–(1.2) possesses one and only one solution (uR , v R)

and the following properties are valid.

(i) uR and v R are radially symmetric satisfying

uR(r) < 0, v R(r) < 0, u′
R(r) > 0 and v ′

R(r) > 0 ∀r ∈ (0, R].
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(ii) For each r ∈ (0, R] we have

⎧⎨
⎩

uR(r) > v R(r) if N1 < N2,

uR(r) = v R(r) if N1 = N2,

uR(r) < v R(r) if N1 > N2.

(iii) There exist two strictly monotone C1 functions γ1, γ2 : (0,∞) → R such that

⎧⎪⎪⎨
⎪⎪⎩

D = {
α(R)

∣∣ α(R) = (
γ1(R), γ2(R)

) ∀R ∈ (0,∞)
}
,

γ ′
1(R) · γ ′

2(R) > 0 ∀R ∈ (0,∞) and

lim
R→∞α(R) = (α10,α20) = α0,

where D is defined in (1.7) and (u(r,α0), v(r,α0)) is a topological solution of (1.1).

The paper is organized as follows. First, based on the investigations of linearized equations, and
adopting the Pohozaev identity and Implicit Function Theorem, we show the uniqueness and the
structure of solutions in Section 2. Finally, by applying the method of moving plane on system equa-
tions, we prove that for each R > 0 every solution pair of (1.1)–(1.2) is negative and radially symmetric
in Appendix A.

2. Uniqueness and solution structures of the Dirichlet problem

In this section, we will prove the uniqueness and solution structures of (1.1)–(1.2). Let (u, v) be
a solution of (1.1)–(1.2). Then, by Proposition A.1 in Appendix A, (u, v) is radially symmetric and
satisfies (1.4)–(1.6). In order to prove Theorem 1.1, we need the following lemmas.

Lemma 2.1. Let (u(r), v(r)) be a solution of (1.4)–(1.5). Then u′ > 0 and v ′ > 0 on (0, R], and the following
statements are valid.

(i) If N1 < N2 then u > v on (0, R).
(ii) If N1 > N2 then u < v on (0, R).

(iii) If N1 = N2 then u ≡ v on (0, R].

Proof. By Proposition A.1 in Appendix A, we have u(r) < 0 and v(r) < 0 ∀r ∈ (0, R). Then the max-
imum principle implies that both u and v cannot attain their local minima inside (0, R). Since
u′(r) > 0 and v ′(r) > 0 for r near 0, we obtain u′(r) > 0, v ′(r) > 0 on (0, R).

By (1.1), we have

�(u − v) = 4π(N1 − N2)δ(0) + (
eu − ev)

.

Let N1 < N2. Then, by (1.6), we have u(r) > v(r) for r near 0. If (u − v)(r0) < 0 at some r0 ∈ (0, R0),
then we choose r0 satisfying (u − v)(r0) = min(0,R0](u − v) < 0, and we have

0 � �(u − v)(r0) = eu(r0) − ev(r0) < 0,

a contradiction. Hence u(r) � v(r) ∀r ∈ (0, R]. By the strong maximum principle, the strict inequality
u(r) > v(r) holds for r ∈ (0, R). This proves (i). Similarly, (ii) and (iii) follow easily. �

Secondly, we need the following identity.
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Lemma 2.2 (Pohozaev identity). Let (u(r), v(r)) be a solution of (1.4)–(1.5). Then we have

[
ru′(r) · rv ′(r) + r2(eu(r) +ev(r)) − r2eu(r)+v(r)] − 2

r∫
0

s
(
eu(s) + ev(s))ds + 2

r∫
0

seu(s)+v(s) ds

= 4N1N2 ∀r ∈ (0, R]. (2.1)

Proof. By multiplying rv ′ and ru′ on both sides of the first and second equation of (1.4) respectively,
we obtain {

rv ′(ru′)′ + rv ′rev(
1 − eu) = rv ′(4π N1rδ(0)

)
,

ru′(rv ′)′ + ru′reu(
1 − ev) = ru′(4π N2rδ(0)

) ∀r ∈ (0, R].

Then adding these two equation together, and using the integration by parts and (1.6), we can get
(2.1) easily. �

In the following, we investigate the properties for the corresponding linearized equation of (1.4).
Let (u(r,α), v(r,α)) be a solution of (1.4) and (1.6). Denote

{
U (r,α) = u(r,α) − 2N1 log r,

V (r,α) = v(r,α) − 2N2 log r,
(2.2)

and let, for i = 1,2, ⎧⎪⎪⎨
⎪⎪⎩

φi(r) = ∂U (r,α)

∂αi
,

ψi(r) = ∂V (r,α)

∂αi
.

(2.3)

Then (φi,ψi), i = 1,2, satisfy the corresponding linearized equations

⎧⎪⎨
⎪⎩

�φi − eu+vφi + ev(
1 − eu)

ψi = 0, r ∈ (0, R],
�ψi − eu+vψi + eu(

1 − ev)
φi = 0, r ∈ (0, R],

φ1(0) = 1 = ψ2(0), φ2(0) = 0 = ψ1(0), φ′
i(0) = 0 = ψ ′

i (0).

(2.4)

We have the following monotone property.

Lemma 2.3. Let (u(r), v(r)) be a solution of (1.4)–(1.5). Then the corresponding (φi,ψi) satisfy

{
φ1(r) > 0, φ′

1(r) > 0, φ2(r) < 0, φ′
2(r) < 0,

ψ1(r) < 0, ψ ′
1(r) < 0, ψ2(r) > 0, ψ ′

2(r) > 0
∀r ∈ (0, R]. (2.5)

Proof. By (2.4) and (1.6), there exists r0 ∈ (0, R) such that

rψ ′
1(r) = −

r∫
0

s
[
eu(s)(1 − ev(s))φ1(s) − eu(s)+v(s)ψ1(s)

]
ds ∀r > 0

� −
r∫

0

s
[
C1s2N1

(
1 − C2s2N2

)
φ1(s) − C3s2N1+2N2ψ1(s)

]
ds ∀r ∈ (0, r0)

� −Cr2N1+2 < 0 ∀r ∈ (0, r0). (2.6)
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By ψ1(0) = 0,ψ ′
1(0) = 0 and (2.6), we have ψ1(r) < 0 and ψ ′

1(r) < 0 ∀r ∈ (0, r0). Also, by (2.4), (1.6),
and the above result, we get

rφ′
1(r) =

r∫
0

s
[
eu(s)+v(s)φ1(s) + ev(s)(eu(s) − 1

)
ψ1(s)

]
ds ∀r > 0

�
r∫

0

C4s · s2N1+2N2φ1(s)ds ∀r ∈ (0, r0)

� Cr2N1+2N2+2 > 0 ∀r ∈ (0, r0). (2.7)

By φ1(0) = 1, φ′
1(0) = 0 and (2.7), we have φ1(r) > 0 and φ′

1(r) > 0 ∀r ∈ (0, r0). These prove that the
first inequality of (2.5) holds for r ∈ (0, r0). However (2.6) and (2.7) hold as long as the first inequality
of (2.5) is true. This shows that the first inequality of (2.5) holds. The proof for the second inequality
of (2.5) is similar. The proof is complete. �

To prove the uniqueness of solutions for (1.1)–(1.2), the following lemma is a key.

Lemma 2.4. Let (u(r), v(r)) be a solution of (1.4)–(1.5) on (0, R0] for some R0 > 0. If (φi(r),ψi(r)), i = 1,2,
is the solution pair for respectively linearized equation (2.4) associated with (u(r), v(r)), then

det

(
φ1(r) φ2(r)
ψ1(r) ψ2(r)

)

= 0 ∀r ∈ [0, R0]. (2.8)

Proof. Let M A(r) = − φ1(r)
φ2(r) and MB(r) = −ψ1(r)

ψ2(r) . Then, by (2.4), we have limr→0+ M A(r) = ∞,
limr→0+ MB(r) = 0, and thus M A(r) > MB(r) ∀r ∈ (0, r1) for some r1 ∈ (0, R0]. We divide the proof
into the following steps.

Step 1. If M A(r) > MB(r) ∀r ∈ (0, r0) for some r0 � R0, then M ′
A(r) < 0 and M ′

B(r) > 0 ∀r ∈ (0, r0).

We prove Step 1 by contradiction. Suppose M ′
A(r) < 0 ∀r ∈ (0, r0) is not true. Then there exist

0 < r1 < r2 � r0 such that

M ′
A(r1) < 0, M ′

A(r2) > 0, M A(r1) = M A(r2)(≡ C0), and

0 < MB(r) < M A(r) < C0 ∀r ∈ (r1, r2). (2.9)

For any c > 0 and r ∈ (0, R0], we define

Ac(r) = φ1(r) + c · φ2(r) and Bc(r) = ψ1(r) + c · ψ2(r). (2.10)

Then Ac and Bc satisfy

⎧⎪⎨
⎪⎩

�Ac − eu+v Ac = ev(
eu − 1

)
Bc ∀r ∈ (0, R0],

�Bc − eu+v Bc = eu(
ev − 1

)
Ac ∀r ∈ (0, R0],

Ac(0) = 1, Bc(0) = c > 0.

(2.11)

From (2.9) and (2.10), we easily obtain

AC0 (r) < 0 < BC0 (r) ∀r ∈ (r1, r2) and AC0 (r1) = 0 = AC0 (r2), (2.12)
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which imply that AC0 has a local minimum at some r̄ ∈ (r1, r2) and �AC0 (r̄) � 0. But, from (2.11) and
(2.12), we get

�AC0 (r̄) = eu(r̄)+v(r̄) AC0 (r̄) + ev(r̄)(eu(r̄) − 1
)

BC0 (r̄) < 0. (2.13)

This contradiction proves M ′
A(r) < 0 ∀r ∈ (0, r0).

Similarly, suppose M ′
B(r) > 0 ∀r ∈ (0, r0) is not true. Then there exist 0 < r1 < r2 � r0 such that

M ′
B(r1) > 0, M ′

B(r2) < 0, MB(r1) = MB(r2)(≡ C0), and

C0 < MB(r) < M A(r) ∀r ∈ (r1, r2). (2.14)

By (2.14) and (2.10), we easily obtain

BC0 (r) < 0 < AC0 (r) ∀r ∈ (r1, r2) and BC0 (r1) = 0 = BC0 (r2), (2.15)

and hence BC0 has a local minimum at some r̄ ∈ (r1, r2) with �BC0 (r̄) � 0. However, from (2.11) and
(2.12) we get

�BC0 (r̄) = eu(r̄)+v(r̄)BC0 (r̄) + eu(r̄)(ev(r̄) − 1
)

AC0 (r̄) < 0. (2.16)

This contradiction proves Step 1.

Step 2. There does not exist R ∈ (0, R0) such that M A(R) = MB(R).
Suppose Step 2 is not true. Then there exists a smallest R ∈ (0, R0] such that M A(R) = MB(R)(≡ C)

and M A(r) > MB(r) > 0 ∀r ∈ (0, R). Let Ac and Bc be defined in (2.10). Then, in this case, by Step 1
we obtain

AC (r) > 0, BC (r) > 0 ∀r ∈ (0, R),

AC (R) = BC (R) = 0,

A′
C (R) < 0, B ′

C (R) < 0 if R < ∞. (2.17)

Taking the differentiation w.r.t. αi , i = 1,2, on the both sides of Pohozaev identity, (2.1), then, for any
c > 0 and r ∈ (0, R0], we obtain

r2 A′
c(r)v ′(r) + r2 B ′

c(r)u′(r) + r2[eu(r) Ac(r) + ev(r)Bc(r)
] − r2eu(r)+v(r)(Ac(r) + Bc(r)

)

− 2

r∫
0

s
[
eu Ac + ev Bc

]
ds + 2

r∫
0

seu+v(Ac + Bc)ds = 0. (2.18)

By replacing c and r with C and R in (2.18) respectively, we easily have

0 = [
R2 A′

C (R)v ′(R) + R2 B ′
C (R)u′(R)

] + [
R2 BC (R)ev(R)

(
1 − eu(R)

) + R2 AC (R)eu(R)
(
1 − ev(R)

)]

+ 2

[ R∫
0

r AC eu(
ev − 1

)
dr +

R∫
0

rBC ev(
eu − 1

)
dr

]
. (2.19)

Then, combining (i) of Lemma 2.1, (2.17) and (2.19), we deduce
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0 > R2 A′
C (R)v ′(R) + R2 B ′

C (R)u′(R)

= 2

[ R∫
0

r AC eu(
1 − ev)

dr +
R∫

0

rBC ev(
1 − eu)

dr

]
> 0,

which yields a contradiction. This proves Step 2.

Step 3. Suppose det
( φ1(R) φ2(R)

ψ1(R) ψ2(R)

) = 0 for some R ∈ [0, R0]. Then, w.l.o.g., there exists C0 > 0 such
that

(
φ1(R)

ψ1(R)

)
+ C0

(
φ2(R)

ψ2(R)

)
=

(
0
0

)
. (2.20)

By (2.20) we obtain M A(R) = C0 = MB(R). This contradicts to Step 2 and proves Step 3. The proof is
complete. �

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We divide the proof into the following steps.

Step 1. By Proposition A.1 in Appendix A and Lemma 2.1 we obtain the results of parts (i) and (ii).

Step 2. Let (u(r,α1,α2), v(r,α1,α2)) be a solution of (1.4) and (1.6). Define the function F by

F (r,α1,α2) =
(

u(r,α1,α2)

v(r,α1,α2)

)
≡

(
F1(r,α1,α2)

F2(r,α1,α2)

)
∀r > 0, ∀(α1,α2) ∈ R2. (2.21)

Denote the zero set of F by

Θ =
{
(r,α1,α2)

∣∣∣ F (r,α1,α2) =
(

0
0

)}
. (2.22)

Then if (R0,α
0
1,α0

2) ∈ Θ , we have ᾱ = (α0
1,α0

2) ∈ D and (u(r, ᾱ), v(r, ᾱ)) is a radial solution of (1.1)–
(1.2) on B R0 , where D is defined in (1.7). By Lemma 2.4, we obtain

det

(
∂ Fi

∂α j

(
R0,α

0
1,α0

2

))
2×2

= det

(
φ1(R0) φ2(R0)

ψ1(R0) ψ2(R0)

)

= 0, (2.23)

where (φi,ψi), i = 1,2, is the respective solution of linearized equation (2.4) associated with
(u(r, ᾱ), v(r, ᾱ)). Applying the Implicit Function Theorem, we obtain that there exist ε = ε(R) > 0
and a unique C1 function curve (γ1, γ2) : (R0 − ε, R0 + ε) → R2 such that (R, γ1(R), γ2(R)) ∈ Θ ∀R ∈
(R0 − ε, R0 + ε). Hence we have (γ1(R), γ2(R)) ∈ D ∀R ∈ (R0 − ε, R0 + ε). Furthermore, by Proposi-
tion A.1, we deduce that γ1 and γ2 are defined on the whole domain (0,∞).

Step 3. γ ′
1(R) · γ ′

2(R) > 0, R ∈ (0,∞).
Suppose Step 3 is not true. Then there exists R0 > 0 such that one of the following cases occur:

(a) γ ′
1(R0) � 0 and γ ′

2(R0) � 0,

(b) γ ′
1(R0) � 0 and γ ′

2(R0) � 0.
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By (i) and (2.21) we respectively obtain

{
u′(R0, γ1(R0), γ2(R0)

)
> 0,

v ′(R0, γ1(R0), γ2(R0)
)
> 0,

(2.24)

and

{
u′(R, γ1(R), γ2(R)

) + φ1(R)γ ′
1(R) + φ2(R)γ ′

2(R) = 0,

v ′(R, γ1(R), γ2(R)
) + ψ1(R)γ ′

1(R) + ψ2(R)γ ′
2(R) = 0

∀R > 0. (2.25)

Suppose case (a) happens. Then, by (2.24), the second equation of (2.25) and ψ2(R0) > 0, we obtain
that

0 < v ′(R0, γ1(R0), γ2(R0)
) = −ψ1(R)γ ′

1(R) − ψ2(R0)γ
′

2(R0) � 0.

If case (b) happens, then, by (2.24), the first equation of (2.25) and φ2(R0) < 0 we obtain that

0 < u′(R0, γ1(R0), γ2(R0)
) = −φ1(R)γ ′

1(R) − φ2(R0)γ
′

2(R0) < 0.

We all get a contradiction. This proves Step 3.

Step 4. By Steps 1–3, we obtain the solution of (1.1)–(1.2) is unique, and (iii) holds. This completes
the proof. �
Appendix A

In this appendix, we will prove the radial symmetry of solutions for (1.1)–(1.2).

Proposition A.1. For each R > 0, every solution (uR , v R) of (1.1)–(1.2) is radially symmetric and satis-
fies uR < 0, v R < 0 in B R \ {O }. Furthermore, there exists a sequence Ri → ∞ as i → ∞ such that
(uRi , v Ri ) → (u0, v0) uniformly on any compact subset of (0,∞), where (u0, v0) is a radially symmetric
pair and a topological solution of (1.1).

Proof. Let R > 0 be any given number and B R = B R(O ) be the ball centered at O with radius R .
Then, by Theorem 3.1 in [17], (1.1)–(1.2) possesses a solution pair (uR , v R). We divide the proof into
the following steps.

Step 1. uR < 0 and v R < 0 in B R \ {O }.
We use the maximum principle to prove Step 1. Suppose uR(x0) = maxx∈B R \{O } uR(x) > 0. Then

�uR(x0) � 0 and thus

0 = �uR(x0) + ev R (x0)
(
1 − euR (x0)

)
< 0,

which yields a contradiction. Hence, uR � 0 in B R \{O }. The strong maximum principle implies uR < 0
in B R \ {O }. Similarly, it holds for v R .

Step 2. For any fixed R > 0, (u, v) = (uR , v R) is a radially symmetric pair.
We will apply the method of moving plane with some modifications to prove Step 2. It suffices

to prove u and v are increasing when the point x = (x1, x2) changes its position along the x1-axis
from the point O to point (R,0). Let AR = {x: 0 < |x| < R}. For 0 < σ < R , define the sets Σσ =
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{x ∈ B R : x1 > σ }, Tσ = {x ∈ B R : x1 = σ }, and uσ (x) = u(xσ ), vσ (x) = v(xσ ) for x ∈ Σσ , where xσ is
the reflection of x with respect to the line x1 = σ , i.e., xσ = (2σ − x1, x2).

Set wσ (x) = u(x) − uσ (x) and zσ (x) = v(x) − vσ (x) for x ∈ Σσ . Then wσ and zσ satisfy the fol-
lowing equations respectively:

{
�wσ − evσ

(
eu − euσ

) = −(
ev − evσ

)(
1 − eu) − 4π N1δ(2σ ,0) in Σσ ,

wσ � 0 on ∂Σσ ,
(A.1)

and

{
�zσ − euσ

(
ev − evσ

) = −(
eu − euσ

)(
1 − ev) − 4π N2δ(2σ ,0) in Σσ ,

zσ � 0 on ∂Σσ ,
(A.2)

where δ(2σ ,0) is the Dirac measure at the point (2σ ,0). Define

⎧⎨
⎩

Su = {
ρ ∈ (0, R): wσ > 0 in Σσ for σ ∈ (ρ, R)

}
,

ρu = inf
ρ∈Su

{ρ}, (A.3)

and

⎧⎨
⎩

S v = {
ρ ∈ (0, R): zσ > 0 in Σσ for σ ∈ (ρ, R)

}
,

ρv = inf
ρ∈S v

{ρ}. (A.4)

First, we show that Su 
= ∅ and S v 
= ∅. By Step 1 and the Hopf Boundary Lemma, we have

∂u

∂ν
(x) > 0 and

∂v

∂ν
(x) > 0 for |x| = R, (A.5)

where ν is the unit outer normal to ∂ B R at x. In particular,

u(x) > u
(
xσ

) = uσ (x) and v(x) > v
(
xσ

) = vσ (x) for x ∈ Σσ (A.6)

if σ is sufficiently close to R . This shows that wσ (x) > 0 and zσ (x) > 0 in Σσ if σ is sufficiently close
to R . Hence the sets Su and S v are all nonempty.

Next, we prove ρu = 0 = ρv . Suppose this is not true. Then, w.l.o.g., we can assume 0 � ρv � ρu

and ρu > 0. Then v(x) � vρu (x) in Σρu and, by continuity, we have wρu (x) � 0 in Σρu . Now, by (A.1),
it is easy to see that

{
�wρu + C(x)wρu � −4π N1δ(2ρu,0) in Σρu ,

wρu � 0 in Σρu ∪ ∂Σρu ,
(A.7)

where C(x) = −evρu eu−euρu

u−uρu
� 0 ∀x ∈ Σρu . Thus, if wρu (x1) = 0 for some x1 ∈ Σρu , then by (A.7) and

the strong maximum principle, we have wρu ≡ 0 in Σρu . However, this contradicts to the fact that
wρu (x) = u(x) − u(xρu ) = −u(xρu ) > 0 for x ∈ ∂Σρu \ {x1 = ρu}. Therefore we obtain that

{
wρu (x) > 0 for any x ∈ Σρu \ Tρu ,

wρu = 0 on ∂Σρu ∩ Tρu .
(A.8)
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By (A.7)–(A.8) and Hopf Boundary Lemma, we obtain

∂ wρu

∂x1
> 0 on ∂Σρu ∩ Tρu . (A.9)

On the other hand, since ρu > 0, there exists a positive sequence εk such that ρu − εk > 0 and
(ρu − εk) → ρu as k → ∞. By the definition of ρu , for each εk , we obtain that wρu−εk is non-positive
somewhere in Σρu−εk . By the way, we have wρu−εk > 0 on ∂Σρu−εk \ Tρu−εk and wρu−εk = 0 on
∂Σρu−εk ∩ Tρu−εk . Hence, for each εk there exists xk ∈ Σρu−εk such that

{
wρu−εk (xk) � 0,

∇wρu−εk (xk) = (0,0).
(A.10)

Since {xk} is a bounded sequence, there exists a convergent subsequence, we still denote it by xk , such
that xk → x0. By (A.10) we obtain that

0 � lim
k→∞

wρu−εk (xk) = lim
k→∞

[
u(xk) − u

(
xρu−εk

)] = u(x0) − u
(
xρu

0

) = wρu (x0).

Hence, by the above inequality and (A.8), we conclude that x0 ∈ ∂Σρu ∩ Tρu and, by (A.10),

0 = lim
k→∞

∂ wρu−εk

∂x1
(xk) = lim

k→∞

[
∂u

∂x1
(xk) − ∂u

∂x1

(
xρu−εk

k

)] = ∂u

∂x1
(x0) − ∂u

∂x1

(
xρu

0

) = ∂ wρu

∂x1
(x0).

This contradicts to (A.9). Thus, ρu = 0 = ρv , and u and v are radially symmetric.

Step 3. Let {(uR , v R)}R>0 be a sequence of solution pairs for (1.1)–(1.2). Then, by Theorem 3.1
in [17], there exists a subsequence {(uRi , v Ri )}∞i=1 such that (uRi , v Ri ) → (u0, v0) uniformly on any
compact subset of R2 \ {O } as i → ∞, and (u0, v0) is a topological solution of (1.1). By Step 2, each
(uRi , v Ri ) is a radial symmetric pair, we have (u0, v0) is also a radial symmetric pair. This completes
the proof of Proposition A.1. �
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