366 research outputs found
Female media use behavior and agreement with publicly promoted agenda-specific health messages.
This study set out to explore the relationship between female media use behavior and agreement with agenda-specific publicly promoted health messages. A random digit dial telephone cross-sectional survey was conducted using a nationally representative sample of female residents aged 25 and over. Respondents' agreement with health messages was measured by a six-item Health Information Scale (HIS). Data were analyzed using chi-square tests and multiple logistic regression. This survey achieved a response rate of 86% (n = 1074). In this study the longest duration of daily television news watching (OR = 2.32), high self-efficacy (OR = 1.56), and greater attention to medical and health news (OR = 5.41) were all correlates of greater agreement with the selected health messages. Surprisingly, Internet use was not significant in the final model. Many women that public health interventions need to be targeting are not receptive to health information that can be accessed through Internet searches. However, they may be more readily targeted by television campaigns. Agenda-specific public health campaigns aiming to empower women to serve as nodes of information transmission and achieve efficient trickle down through the family unit might do better to invest more heavily in television promotion
Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells
AbstractThe functions of the Betanodavirus non-structural protein B1 is still unknown. We examined B1 expression patterns and investigated novel cell death regulatory functions for this viral protein following RGNNV infection in fish cells. The B1 gene (336 nt) was cloned from the redspotted grouper nervous necrosis virus (RGNNV) genome. B1 mRNA was rapidly expressed in the fish cells from viral RNA3 at 12 h post-infection (p.i.). At the protein level, expression was low at 12 h p.i., and then increased rapidly between 24 h and 72 h p.i. In RGNNV-infected, B1-containing fish cells, over expression of RGNNV B1 reduced Annexin-V positive cells by 50% and 65% at 48 h and 72 h p.i., respectively, and decreased loss of mitochondrial membrane potential (MMP) by 20% and 70% at 48 h and 72 h p.i., respectively. Finally, B1 knockdown during RGNNV infection using anti-sense RNA increased necrotic cell death and reduced cell viability during the early replication cycle (24 h p.i.). Our results suggest that B1 is an early expression protein that has an anti-necrotic cell death function which reduces the MMP loss and enhances viral host cell viability. This finding provides new insights into RNA viral pathogenesis and disease control
Acquisition of compound skills and learning costs for expanding competence sets
AbstractFor each decision problem, there is a competence set consisting of ideas, knowledge, information, and skills for solving that problem. When decision makers have not acquired the com petence set, it is more difficult for them to make decisions. In order to effectively acquire a needed competence set to cope with the problem they face, finding an appropriate learning sequence for acquiring needed single skills for decision makers, the so-called competence set expansion, is very necessary. A compound skill represents a collection of single skills that might be acquired, and some useful compound skills can be added to the needed competence set to help acquire some single skills. To effectively expand the competence set, effective acquisitions of compound skills and learning costs are both necessary. This paper thus proposes a data mining technique to extract potentially useful compound skills from single skills. Subsequently, an effective method is proposed to obtain the learning cost between any two skills. A computer simulation is employed to further show that it is feasible to use those potentially useful compound skills to facilitate the acquisition of single skills through a known integer programming method for expanding the competence set
Obstacle-Resistant Deployment Algorithms for Wireless Sensor Networks
[[abstract]]Node deployment is an important issue in wireless sensor networks (WSNs). Sensor nodes should be efficiently deployed in a predetermined region in a low-cost and high-coverage-quality manner. Random deployment is the simplest way to deploy sensor nodes but may cause unbalanced deployment and, therefore, increase hardware costs and create coverage holes. This paper presents the efficient obstacle-resistant robot deployment (ORRD) algorithm, which involves the design of a node placement policy, a serpentine movement policy, obstacle-handling rules, and boundary rules. By applying the proposed ORRD, the robot rapidly deploys a near-minimal number of sensor nodes to achieve full sensing coverage, even though there exist unpredicted obstacles with regular or irregular shapes. Performance results reveal that ORRD outperforms the existing robot deployment mechanism in terms of power conservation and obstacle resistance and, therefore, achieves better deployment performance.[[incitationindex]]SC
Factors Affecting Aluminum Dissolve from Acidified Water Purification Sludge
Recovering resources from water purification sludge (WPS) have been gradually stipulated in environmental protection laws and regulations in many nations. Hence, reusing the WPS is becoming an important topic, and recovering alum from WPS is one of the many practical alternatives. Most previous research efforts have been conducted on studying the amphoteric characteristic of aluminum hydroxide for investigating the optimum pH range to dissolve the Al(III) species from WPS, but it has been lack of reaction kinetics or mechanisms related discussion. Therefore, in this investigation, water purification sludge (WPS) solution was broken by ultrasound to make particle size of reactants smaller, specific surface area larger. According to the reaction kinetics, these phenomena let the dissolved aluminum salt quantity increased and the reaction rate go faster
Recommended from our members
GPER-induced signaling is essential for the survival of breast cancer stem cells.
G protein-coupled estrogen receptor-1 (GPER), a member of the G protein-coupled receptor (GPCR) superfamily, mediates estrogen-induced proliferation of normal and malignant breast epithelial cells. However, its role in breast cancer stem cells (BCSCs) remains unclear. Here we showed greater expression of GPER in BCSCs than non-BCSCs of three patient-derived xenografts of ER- /PR+ breast cancers. GPER silencing reduced stemness features of BCSCs as reflected by reduced mammosphere forming capacity in vitro, and tumor growth in vivo with decreased BCSC populations. Comparative phosphoproteomics revealed greater GPER-mediated PKA/BAD signaling in BCSCs. Activation of GPER by its ligands, including tamoxifen (TMX), induced phosphorylation of PKA and BAD-Ser118 to sustain BCSC characteristics. Transfection with a dominant-negative mutant BAD (Ser118Ala) led to reduced cell survival. Taken together, GPER and its downstream signaling play a key role in maintaining the stemness of BCSCs, suggesting that GPER is a potential therapeutic target for eradicating BCSCs
Fucosyltransferase 1 and 2 play pivotal roles in breast cancer cells.
FUT1 and FUT2 encode alpha 1, 2-fucosyltransferases which catalyze the addition of alpha 1, 2-linked fucose to glycans. Glycan products of FUT1 and FUT2, such as Globo H and Lewis Y, are highly expressed on malignant tissues, including breast cancer. Herein, we investigated the roles of FUT1 and FUT2 in breast cancer. Silencing of FUT1 or FUT2 by shRNAs inhibited cell proliferation in vitro and tumorigenicity in mice. This was associated with diminished properties of cancer stem cell (CSC), including mammosphere formation and CSC marker both in vitro and in xenografts. Silencing of FUT2, but not FUT1, significantly changed the cuboidal morphology to dense clusters of small and round cells with reduced adhesion to polystyrene and extracellular matrix, including laminin, fibronectin and collagen. Silencing of FUT1 or FUT2 suppressed cell migration in wound healing assay, whereas FUT1 and FUT2 overexpression increased cell migration and invasion in vitro and metastasis of breast cancer in vivo. A decrease in mesenchymal like markers such as fibronectin, vimentin, and twist, along with increased epithelial like marker, E-cadherin, was observed upon FUT1/2 knockdown, while the opposite was noted by overexpression of FUT1 or FUT2. As expected, FUT1 or FUT2 knockdown reduced Globo H, whereas FUT1 or FUT2 overexpression showed contrary effects. Exogenous addition of Globo H-ceramide reversed the suppression of cell migration by FUT1 knockdown but not the inhibition of cell adhesion by FUT2 silencing, suggesting that at least part of the effects of FUT1/2 knockdown were mediated by Globo H. Our results imply that FUT1 and FUT2 play important roles in regulating growth, adhesion, migration and CSC properties of breast cancer, and may serve as therapeutic targets for breast cancer
Recommended from our members
Sialylation of vasorin by ST3Gal1 facilitates TGF-β1-mediated tumor angiogenesis and progression.
ST3Gal1 is a key sialyltransferase which adds α2,3-linked sialic acid to substrates and generates core 1 O-glycan structure. Upregulation of ST3Gal1 has been associated with worse prognosis of breast cancer patients. However, the protein substrates of ST3Gal1 implicated in tumor progression remain elusive. In our study, we demonstrated that ST3GAL1-silencing significantly reduced tumor growth along with a notable decrease in vascularity of MCF7 xenograft tumors. We identified vasorin (VASN) which was shown to bind TGF-β1, as a potential candidate that links ST3Gal1 to angiogenesis. LC-MS/MS analysis of VASN secreted from MCF7, revealed that more than 80% of its O-glycans are sialyl-3T and disialyl-T. ST3GAL1-silencing or desialylation of VASN by neuraminidase enhanced its binding to TGF-β1 by 2- to 3-fold and thereby dampening TGF-β1 signaling and angiogenesis, as indicated by impaired tube formation of HUVECs, suppressed angiogenesis gene expression and reduced activation of Smad2 and Smad3 in HUVEC cells. Examination of 114 fresh primary breast cancer and their adjacent normal tissues showed that the expression levels of ST3Gal1 and TGFB1 were high in tumor part and the expression of two genes was positively correlated. Kaplan Meier survival analysis showed a significantly shorter relapse-free survival for those with lower expression VASN, notably, the combination of low VASN with high ST3GAL1 yielded even higher risk of recurrence (p = 0.025, HR = 2.967, 95% CI = 1.14-7.67). Since TGF-β1 is known to transcriptionally activate ST3Gal1, our findings illustrated a feedback regulatory loop in which TGF-β1 upregulates ST3Gal1 to circumvent the negative impact of VASN
Task-Dependent Differences in Operant Behaviors of Rats With Acute Exposure to High Ambient Temperature: A Potential Role of Hippocampal Dopamine Reuptake Transporters
Behavioral or cognitive functions are known to be influenced by thermal stress from the change in ambient temperature (Ta). However, little is known about how increased Ta (i.e., when the weather becomes warm or hot) may affect operant conditioned behavior and the neural substrates involved. The present study thus investigated the effects of high Ta on operant behaviors maintained on a fixed-ratio 1 (FR1) and a differential reinforcement for low-rate responding 10 s (DRL 10-s) schedule of reinforcement. The rats were randomly assigned to three groups receiving acute exposure to Ta of 23°C, 28°C, and 35°C, respectively, for evaluating the effects of high Ta exposure on four behavioral tests. Behavioral responses in an elevated T-maze and locomotor activity were not affected by Ta treatment. Regarding operant tests, while the total responses of FR1 behavior were decreased only under 35°C when compared with the control group of 23°C, those of DRL 10-s behavior were significantly reduced in both groups of 28°C and 35°C. Distinct patterns of inter-response time (IRT) distribution of DRL behavior appeared among the three groups; between-group differences of behavioral changes produced by high Ta exposure were confirmed by quantitative analyses of IRT data. Western blot assays of dopamine (DA) D1 and D2 receptor, DA transporter (DAT) and brain-derived neurotrophic factor (BDNF) were conducted for the sample tissues collected in six brain areas from all the subjects after acute high Ta exposure. Significant Ta-related effects were only revealed in the dorsal hippocampus (dHIP). In which, the DAT levels were increased in a Ta-dependent fashion that was associated with operant behavior changes under high Ta exposure. And, there as an increased level of D1 receptors in the 28°C group. In summary, these data indicate that the performance of operant behavior affected by the present high Ta exposure is task-dependent, and these changes of operant behaviors cannot be attributed to gross motor function or anxiety being affected. The regulation of dHIP DAT may be involved in this operant behavioral change under high Ta exposure
Pulsed Wave Doppler Ultrasound Is Useful to Assess Vasomotor Response in Patients with Multiple System Atrophy and Well Correlated with Tilt Table Study
The study aim was to assess sympathetic vasomotor response (SVR) by using pulsed wave Doppler (PWD) ultrasound in patients with multiple system atrophy (MSA) and correlate with the tilt table study. We recruited 18 male patients and 10 healthy men as controls. The SVR of the radial artery was evaluated by PWD, using inspiratory cough as a provocative maneuver. The response to head-up tilt was studied by a tilt table with simultaneous heart rate and blood pressure recording. The hemodynamic variables were compared between groups, and were examined by correlation analysis. Regarding SVR, MSA patients exhibited a prolonged latency and less heart rate acceleration following inspiratory cough. Compared with the tilt table test, the elevation of heart rate upon SVR was positively correlated to the increase of heart rate after head-up tilt. The correlation analysis indicated that the magnitude of blood pressure drop from supine to upright was positively associated with the SVR latency but negatively correlated with the heart rate changes upon SVR. The present study demonstrated that blunted heart rate response might explain MSA's vulnerability to postural challenge. PWD may be used to predict cardiovascular response to orthostatic stress upon head-up tilt in MSA patients
- …