2,617 research outputs found

    A Probe of New Physics in Top Quark Pair Production at e−e+e^-e^+ Colliders

    Full text link
    We describe how to probe new physics through examination of the form factors describing the Ztt couplings via the scattering process e^-e^+->t+tbar. We focus on experimental methods on how the top quark momentum can be determined and show how this can be applied to select polarized samples of ttˉt\bar{t} pairs through the angular correlations in the final state leptons. We also study the dependence on the energy and luminosity of an \ee\ collider to probe a CP violating asymmetry at the 10−210^{-2} level.}Comment: 24 pages in TeXsis (figures available upon request) (revised July 1993

    Trends in Elasticity and Electronic Structure of Transition-Metal Nitrides and Carbides from First Principles

    Full text link
    The elastic properties of the B1B_1-structured transition-metal nitrides and their carbide counterparts are studied using the {\it ab initio\} density functional perturbation theory. The linear response results of elastic constants are in excellent agreement with those obtained from numerical derivative methods, and are also consistent with measured data. We find the following trends: (1) Bulk moduli BB and tetragonal shear moduli G′=(C11−C12)/2G^{\prime}=(C_{11}-C_{12})/2, increase and lattice constants a0a_{0} decrease rightward or downward on the Periodic Table for the metal component or if C is replaced by N; (2) The inequality B>G′>G>0B > G^{\prime} > G > 0 holds for G=C44G=C_{44}; (3) GG depends strongly on the number of valence electrons per unit cell (ZVZ_{V}). From the fitted curve of GG as a function of ZVZ_{V}, we can predict that MoN is unstable in B1B_{1} structure, and transition-metal carbonitrides (e.g.e.g. ZrCx_{x}N1−x_{1-x}) and di-transition-metal carbides (e.g.e.g. Hfx_{x}Ta1−x_{1-x}C) have maximum GG at ZV≈8.3Z_{V} \approx 8.3.Comment: 4 pages, 2 figures, submitted to PRL. 2 typos in ref. 15 were correcte

    Gravitomagnetism in Quantum Mechanics

    Full text link
    We give a systematic treatment of the quantum mechanics of a spin zero particle in a combined electromagnetic field and a weak gravitational field, which is produced by a slow moving matter source. The analysis is based on the Klein-Gordon equation expressed in generally covariant form and coupled minimally to the electromagnetic field. The Klein-Gordon equation is recast into Schroedinger equation form (SEF), which we then analyze in the non-relativistic limit. We include a discussion of some rather general observable physical effects implied by the SEF, concentrating on gravitomagnetism. Of particular interest is the interaction of the orbital angular momentum of the particle with the gravitomagnetic field.Comment: 9 page

    Tumor site immune markers associated with risk for subsequent basal cell carcinomas.

    Get PDF
    BackgroundBasal cell carcinoma (BCC) tumors are the most common skin cancer and are highly immunogenic.ObjectiveThe goal of this study was to assess how immune-cell related gene expression in an initial BCC tumor biopsy was related to the appearance of subsequent BCC tumors.Materials and methodsLevels of mRNA for CD3ε (a T-cell receptor marker), CD25 (the alpha chain of the interleukin (IL)-2 receptor expressed on activated T-cells and B-cells), CD68 (a marker for monocytes/macrophages), the cell surface glycoprotein intercellular adhesion molecule-1 (ICAM-1), the cytokine interferon-γ (IFN-γ) and the anti-inflammatory cytokine IL-10 were measured in BCC tumor biopsies from 138 patients using real-time PCR.ResultsThe median follow-up was 26.6 months, and 61% of subjects were free of new BCCs two years post-initial biopsy. Patients with low CD3ε CD25, CD68, and ICAM-1 mRNA levels had significantly shorter times before new tumors were detected (p = 0.03, p = 0.02, p = 0.003, and p = 0.08, respectively). Furthermore, older age diminished the association of mRNA levels with the appearance of subsequent tumors.ConclusionsOur results show that levels of CD3ε, CD25, CD68, and ICAM-1 mRNA in BCC biopsies may predict risk for new BCC tumors

    The Generalized Uncertainty Principle and Black Hole Remnants

    Full text link
    In the current standard viewpoint small black holes are believed to emit radiation as black bodies at the Hawking temperature, at least until they reach Planck size, after which their fate is open to conjecture. A cogent argument against the existence of remnants is that, since no evident quantum number prevents it, black holes should radiate completely away to photons and other ordinary stable particles and vacuum, like any unstable quantum system. Here we argue the contrary, that the generalized uncertainty principle may prevent their total evaporation in exactly the same way that the uncertainty principle prevents the hydrogen atom from total collapse: the collapse is prevented, not by symmetry, but by dynamics, as a minimum size and mass are approached.Comment: 11 pages, 4 figures; Winner of 3rd Place in the 2001 Gravity Research Foundation Essay Competitio

    W-band extended interaction oscillations using post-accelerated pseudospark-sourced electron beams

    Get PDF
    This article presents the investigation of a millimetre-wave extended interaction oscillation using both pencil and sheet-shaped pseudospark (PS)-sourced electron beams. Two W-band (75-110 GHz) pencil and sheet beam extended interaction oscillators (EIO) were designed and constructed respectively. The PS-sourced pencil beam EIO structure was firstly driven by a four-gap PS discharge operating at 30.5 kV and the output power of 38 W was achieved. The same EIO structure was then driven by an improved PS-sourced beam produced by combining a single-gap PS structure with an integrated post-acceleration section which generated an output power of 200W. The preliminary PS-sourced sheet beam EIO structure will also be presented

    Are Small Reimbursement Changes Enough to Change Cancer Care? Reimbursement Variation in Prostate Cancer Treatment

    Get PDF
    The Centers for Medicare and Medicaid Services recently initiated small reimbursement adjustments to improve the value of care delivered under fee-for-service. To estimate the degree to which reimbursement influences physician decision making, we examined utilization of gonadotropin-releasing hormone (GnRH) agonists among urologists as Part B drug reimbursement varied in a fee-for-service environment

    Applications of Pseudospark produced electron beams in millimetre wave radiation sources

    Get PDF
    Pseudospark (PS) electron beams of outstanding performance have been studied recently with their application to a demanding field of millimeter-wave and terahertz radiation generation. To this end, the PS discharge process itself has been studied and millimeter wave sources which utilize a PS sourced electron beam in different beam-wave interaction structures have been designed and modelled using the particle-in-cell code MAGIC. The experimental demonstration of the PS-sourced electron beams of sub-millimeter diameter and the coherent millimeter wave radiation generated from PS sourced electron beams in different beam-wave interaction structures will be presented

    Scaling and Formulary cross sections for ion-atom impact ionization

    Full text link
    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.Comment: 46 pages, 8 figure

    Compact sub-terahertz radiation sources driven by pseudospark-produced electron beams

    Get PDF
    High quality intense electron beams play an important role in high power millimeter-wave and terahertz radiation generation. To this end, the pseudospark-sourced electron beam has been investigated with their applications in different beam-wave interaction structures. Different structures have been designed and modelled using the particle-in-cell codes MAGIC and CST Particle Studio. The experimental demonstration of the PS-sourced electron beams of submillimeter diameter and the coherent millimeter wave radiation generated from PS-sourced electron beams in different beam-wave interaction structures will be presented
    • …
    corecore