27 research outputs found
Defining the interval for monitoring potential adverse events following immunization (AEFIs) after receipt of live viral vectored vaccines
Live viral vectors that express heterologous antigens of the target pathogen are being investigated in the development of novel vaccines against serious infectious agents like HIV and Ebola. As some live recombinant vectored vaccines may be replication-competent, a key challenge is defining the length of time for monitoring potential adverse events following immunization (AEFI) in clinical trials and epidemiologic studies. This time period must be chosen with care and based on considerations of pre-clinical and clinical trials data, biological plausibility and practical feasibility. The available options include: (1) adapting from the current relevant regulatory guidelines; (2) convening a panel of experts to review the evidence from a systematic literature search to narrow down a list of likely potential or known AEFI and establish the optimal risk window(s); and (3) conducting “near real-time“ prospective monitoring for unknown clustering's of AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for pre-specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected outcomes. The risk window established by any of these options could be used along with (4) establishing a registry of clinically validated pre-specified AESI to include in case-control studies. Depending on the infrastructure, human resources and databases available in different countries, the appropriate option or combination of options can be determined by regulatory agencies and investigators
Defining the interval for monitoring potential adverse events following immunization (AEFIs) after receipt of live viral vectored vaccines
Live viral vectors that express heterologous antigens of the target pathogen are being investigated in the development of novel vaccines against serious infectious agents like HIV and Ebola. As some live recombinant vectored vaccines may be replication-competent, a key challenge is defining the length of time for monitoring potential adverse events following immunization (AEFI) in clinical trials and epidemiologic studies. This time period must be chosen with care and based on considerations of pre-clinical and clinical trials data, biological plausibility and practical feasibility. The available options include: (1) adapting from the current relevant regulatory guidelines; (2) convening a panel of experts to review the evidence from a systematic literature search to narrow down a list of likely potential or known AEFI and establish the optimal risk window(s); and (3) conducting “near real-time“ prospective monitoring for unknown clustering's of AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for pre-specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected outcomes. The risk window established by any of these options could be used along with (4) establishing a registry of clinically validated pre-specified AESI to include in case-control studies. Depending on the infrastructure, human resources and databases available in different countries, the appropriate option or combination of options can be determined by regulatory agencies and investigators
Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria
Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria
Enhancing vaccine safety capacity globally: A lifecycle perspective
Major vaccine safety controversies have arisen in several countries beginning in the last decades of 20th century. Such periodic vaccine safety controversies are unlikely to go away in the near future as more national immunization programs mature with near elimination of target vaccine-preventable diseases that result in relative greater prominence of adverse events following immunizations, both true reactions and temporally coincidental events. There are several ways in which vaccine safety capacity can be improved to potentially mitigate the impact of future vaccine safety controversies. This paper aims to take a "lifecycle" approach, examining some potential pre- and post-licensure opportunities to improve vaccine safety, in both developed (specifically U.S. and Europe) and low- and middle-income countries
Integrated Carbon Budget Models for the Everglades Terrestrial-Coastal-Oceanic Gradient: Current Status and Needs for Inter-Site Comparisons
Recent studies suggest that coastal ecosystems can bury significantly more C than tropical forests, indicating that continued coastal development and exposure to sea level rise and storms will have global biogeochemical consequences. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) site provides an excellent subtropical system for examining carbon (C) balance because of its exposure to historical changes in freshwater distribution and sea level rise and its history of significant long-term carbon-cycling studies. FCE LTER scientists used net ecosystem C balance and net ecosystem exchange data to estimate C budgets for riverine mangrove, freshwater marsh, and seagrass meadows, providing insights into the magnitude of C accumulation and lateral aquatic C transport. Rates of net C production in the riverine mangrove forest exceeded those reported for many tropical systems, including terrestrial forests, but there are considerable uncertainties around those estimates due to the high potential for gain and loss of C through aquatic fluxes. C production was approximately balanced between gain and loss in Everglades marshes; however, the contribution of periphyton increases uncertainty in these estimates. Moreover, while the approaches used for these initial estimates were informative, a resolved approach for addressing areas of uncertainty is critically needed for coastal wetland ecosystems. Once resolved, these C balance estimates, in conjunction with an understanding of drivers and key ecosystem feedbacks, can inform cross-system studies of ecosystem response to long-term changes in climate, hydrologic management, and other land use along coastlines