99 research outputs found

    Differences in Apoptosis and Cell Cycle Distribution between Human Melanoma Cell Lines UACC903 and UACC903(+6), before and after UV Irradiation

    Get PDF
    Introduction of human chromosome 6 into malignant melanoma cell line UACC903 resulted in generation of the chromosome 6-mediated suppressed cell subline UACC903(+6) that displays attenuated growth rate, anchorage-dependency, and reduced tumorigenicity. We have showed that overexpression of a chromosome 6-encoded tumor suppressor gene led to partial suppression to UACC903 cell growth. We now describe the differences in apoptosis and cell cycle between UACC903 and UACC903(+6) before and after UV irradiation. MTT assay revealed 86.92±8.24% of UACC903 cells viable, significantly (p<0.01) higher than 48.76±5.31% of UACC903(+6), at 24 hr after 254-nm UV irradiation (40 J/M2). Before UV treatment, flow cytometry analysis revealed 6.06±0.20% apoptosis in UACC903, significantly (p=0.01) lower than 6.67±0.15% in UACC903(+6). The G0/G1, S and G2/M phase cells of UACC903 were, respectively, 54.10±0.59%, 22.31±0.50% and 16.85±0.25%, all significantly (p<0.01) different from the corresponding percentages (58.82±0.35%, 20.48±0.05%, and 13.17±0.45%) of UACC903(+6). After the UV treatment, UACC903 cells in apoptosis, G0/G1, S, and G2/M became 12.59±0.17%, 38.90±0.67%, 19.74±0.70%, and 27.01±0.66%, respectively, while UACC903(+6) cells were 24.16±0.48%, 37.97±0.62%, 19.20±0.52%, and 15.69±0.14%. TUNEL assay revealed 2.31±0.62% apoptosis in UACC903, significantly (p<0.01) lower than 9.60±1.14% of UACC903(+6), and a linear and exponential increase of apoptosis, respectively, in response to the UV treatment. These results indicate that UACC903(+6) cells have a greater tendency to undergo apoptosis and are thus much more sensitive to UV irradiation. Our findings further suggest a novel mechanism for chromosome 6-mediated suppression of tumorigenesis and metastasis, i.e., through increased cell death

    TRA2A Binds With LncRNA MALAT1 To Promote Esophageal Cancer Progression By Regulating EZH2/beta-catenin Pathway

    Get PDF
    The RNA binding protein TRA2A, a member of the transformer 2 homolog family, plays a crucial role in the alternative splicing of pre-mRNA. However, it remains unclear whether TRA2A is involved in non-coding RNA regulation and, if so, what are the functional consequences. By analyzing expression profiling data, we found that TRA2A is highly expressed in esophageal cancer and is associated with disease-free survival and overall survival time. Subsequent gain- and loss-of-function studies demonstrated that TRA2A promotes proliferation and migration of esophageal squamous cell carcinoma and adenocarcinoma cells. RNA immunoprecipitation and RNA pull-down assay indicated that TRA2A can directly bind specific sites on MALAT1 in cells. In addition, ectopic expression or depletion of TRA2A leads to MALAT expression changes accordingly, thus modulates EZH2/β-catenin pathway. Together, these findings elucidated that TRA2A triggers carcinogenesis via MALAT1 mediated EZH2/β-catenin axis in esophageal cancer cells

    CRIT:Identifying RNA-binding protein regulator in circRNA life cycle via non-negative matrix factorization

    Get PDF
    Circular RNAs (circRNAs) are endogenous non-coding RNAs that regulate gene expression and participate in carcinogenesis. However, the RNA-binding proteins (RBPs) involved in circRNAs biogenesis and modulation remain largely unclear. We developed the circRNA regulator identification tool (CRIT), a non-negative matrix-factorization-based pipeline to identify regulating RBPs in cancers. CRIT uncovered 73 novel regulators across thousands of samples by effectively leveraging genomics data and functional annotations. We demonstrated that known RBPs involved in circRNA control are significantly enriched in these predictions. Analysis of circRNA-RBP interactions using two large cross-linking immunoprecipitation (CLIP) databases, we validated the consistency between CRIT prediction and the CLIP experiments. Furthermore, newly discovered RBPs are functionally connected with authentic circRNA regulators by various biological associations, such as physical interaction, similar binding motifs, common transcription factor modulation, and co-expression. When analyzing RNA sequencing (RNA-seq) datasets after short hairpin RNA (shRNA)/small interfering RNA (siRNA) knockdown, we found several novel RBPs that can affect global circRNA expression, which strengthens their role in the circRNA life cycle. The above evidence provided independent confirmation that CRIT is a useful tool to capture RBPs in circRNA processing. Finally, we show that authentic regulators are more likely the core splicing proteins and peripheral factors and usually harbor more alterations in the vast majority of cancers

    circ-NOL10 regulated by MTDH/CASC3 inhibits breast cancer progression and metastasis via multiple miRNAs and PDCD4

    Get PDF
    Circular RNAs (circRNAs) play important roles in carcinogenesis. Here, we investigated the mechanisms and clinical significance of circ-NOL10, a highly repressed circRNA in breast cancer. Subsequently, we also identified RNA-binding proteins (RBPs) that regulate circ-NOL10. Bioinformatics analysis was utilized to predict regulatory RBPs as well as circ-NOL10 downstream microRNAs (miRNAs) and mRNA targets. RNA immunoprecipitation, luciferase assay, fluorescence in situ hybridization, cell proliferation, wound healing, Matrigel invasion, cell apoptosis assays, and a xenograft model were used to investigate the function and mechanisms of circ-NOL10 in vitro and in vivo. The clinical value of circ-NOL10 was evaluated in a large cohort of breast cancer by quantitative real-time PCR. Circ-NOL10 is downregulated in breast cancer and associated with aggressive characteristics and shorter survival time. Upregulation of circ-NOL10 promotes apoptosis, decreases proliferation, and inhibits invasion and migration. Furthermore, circ-NOL10 binds multiple miRNAs to alleviate carcinogenesis by regulating PDCD4. CASC3 and metadherin (MTDH) can bind directly to circ-NOL10 with characterized motifs. Accordingly, ectopic expression or depletion of CASC3 or MTDH leads to circ-NOL10 expression changes, suggesting that these two RBPs modulate circ-NOL10 in cancer cells. circ-NOL10 is a novel biomarker for diagnosis and prognosis in breast cancer. These results highlight the importance of therapeutic targeting of the RBP-noncoding RNA (ncRNA) regulation network

    Case Study of "Wake Effect" of Adjacent Offshore Wind Farms

    Get PDF
    [Introduction] The purpose of this paper is to study the influence of real "wake effect" of adjacent offshore wind farms on generation loss. [Method] The method is established with the wake scene classification based on the actual arrangement of wind farms under different wind direction and the real wake power loss of adjacent wind farms (with a spacing of more than 20D) in operation are analyzed, based on the actual SCADA data of wind turbines in large offshore wind farms and the measured wind data of LIDAR in the same period. [Result] The results show that: for the large-scale offshore wind farms with regular arrangement, the power generation normalization of the actual SCADA data can better reflect the distribution characteristics of offshore wind energy resources and the difference of power generation capacity; Under the condition of highly centralized wind direction, the adjacent wind farms in the downwind are obviously affected by the "wake effect" of the upwind wind farm; The buffer zones with different distances of adjacent wind farms have an obvious effect on the recovery of wind speed which affected the power generating capacity. The power generating capacity can be improved but if the buffer zone can reach enough distance; In different scenes of this case, the buffer zone distance is between 23D and 44D, and the power loss of wake decreases by 27%~4%. [Conclusion] This work can provide guidance for the planning of offshore wind power base and the optimization design of large offshore wind frams

    Splicing factor TRA2A contributes to esophageal cancer progression via a noncanonical role in lncRNA m<sup>6</sup>A methylation

    Get PDF
    Transformer 2 alpha homolog (TRA2A), a member of the serine/arginine-rich splicing factor family, has been shown to control mRNA splicing in development and cancers. However, it remains unclear whether TRA2A is involved in lncRNA regulation. In the present study, we found that TRA2A was upregulated and correlated with poor prognosis in esophageal cancer. Downregulation of TRA2A suppressed the tumor growth in xenograft nude mice. Epitranscriptomic microarray showed that depletion of TRA2A affected global lncRNA methylation similarly to the key m6A methyltransferase, METTL3, by silencing. MeRIP-qPCR, RNA pull-down, CLIP analyses, and stability assays indicated that ablation of TRA2A reduced m6A-modification of the oncogenic lncRNA MALAT1, thus inducing structural alterations and reduced stability. Furthermore, Co-IP experiments showed TRA2A directly interacted with METTL3 and RBMX, which also affected the writer KIAA1429 expression. Knockdown of TRA2A inhibited cell proliferation in a manner restored by RBMX/KIAA1429 overexpression. Clinically, MALAT1, RBMX, and KIAA1429 were prognostic factors of worse survival in ESCA patients. Structural similarity-based virtual screening in FDA-approved drugs repurposed nebivolol, a β1-adrenergic receptor antagonist, as a potent compound to suppress the proliferation of esophageal cancer cells. Cellular thermal shift and RIP assay indicated that nebivolol may compete with MALAT1 to bind TRA2A. In conclusion, our study revealed the noncanonical function of TRA2A, which coordinates with multiple methylation proteins to promote oncogenic MALAT1 during ESCA carcinogenesis.</p

    Regulatory Mechanisms of the Wnt/β-Catenin Pathway in Diabetic Cutaneous Ulcers

    Get PDF
    Skin ulcers are a serious complication of diabetes. Diabetic patients suffer from vascular lesions and complications such as peripheral neuritis, peripheral vascular lesions, and collagen abnormalities, which result in skin wounds that are refractory and often develop into chronic ulcers. The healing of skin ulcers requires an inflammatory reaction, wound proliferation, remodeling regulation, and control of stem cells. Studies investigating diabetic cutaneous ulcers have focused on cellular and molecular levels. Diabetes can cause nerve and blood vessel damage, and persistent high blood sugar levels can cause systemic multisite nerve damage based on peripheral neuropathy. The long-term hyperglycemia state enables the polyol glucose metabolism pathway to be activated, increasing the accumulation of toxic substances in the vascular injured nerve tissue cells. Sustained hyperglycemia leads to dysfunction of epithelial cells, leading to a decrease in pro-angiogenic signaling and nitric oxide production. In addition, due to impaired leukocyte function in hyperglycemia, immune function is impaired and the immune response at relevant sites is insufficient, making diabetic foot more difficult to heal. The Wnt/β-catenin pathway is a highly conserved signal transduction pathway involved in a variety of biological processes, such as cell proliferation, apoptosis, and differentiation. It is considered an important pathway involved in the healing of skin wounds. This article summarizes the mechanism of action of the Wnt/β-catenin pathway involved in the inflammatory responses to diabetic ulcers, wound proliferation, wound remodeling, and stem cells. The interactions between the Wnt signal pathway and other metabolic pathways are also discussed

    The effect of Bafa Wubu of Tai Chi on college students’ anxiety and depression: A randomized, controlled pilot study

    Get PDF
    Objective: This pilot study aimed to explore the mechanism of the effects of Bafa Wubu of Tai Chi (BWTC) on anxiety and depression in college students using resting-state functional magnetic resonance imaging (RS-fMRI).Methods: Eighteen college students (5 males and 13 females) with anxiety and depression met the study criteria and were randomly divided into an experimental group (aged 24.20 ± 4.07 years) and a control group (aged 22.50 ± 5.95). The experimental group received an eight-week BWTC intervention five times/week for 60 min/session. The control group maintained normal daily life without any exercise intervention. These students were assessed using RS-fMRI scans, the self-rating anxiety scale (SAS), and the self-rating depression scale (SDS). Spearman correlation analysis was used, and statistical significance was defined as a two-sided p-value of &lt;0.05.Results: After the intervention, the SAS and SDS scores of the BWTC group significantly reduced (p = 0.002; p = 0.001). Compared with the control group, the fALFF values of the right middle frontal gyrus, orbital part (Frontal_Mid_Orb_R) (p = 0.043), right inferior occipital gyrus (Occipital_Inf_R) (p = 0.003), and right middle temporal gyrus of the temporal pole (Temporal_Pole_Mid_R) (p = 0.003) in the BWTC group increased significantly; the fALFF values of the left middle frontal gyrus (Frontal_Mid_L) (p = 0.001) and right supplementary motor area (Supp_Motor_Area_R) (p = 0.010) in BWTC group decreased significantly. The fALFF values of Frontal_Mid_Orb_R were significantly positively correlated with the SDS score (r = 0.852, p = 0.015) and the fALFF values of Frontal_Mid_L were significantly negatively correlated with the SAS score (r = −0.797, p = 0.032).Conclusion: In this pilot study with college students, BWTC alleviated anxiety and depression, potentially through modulating activity in the Frontal_Mid_L and Frontal_Mid_Orb_R, respectively
    • …
    corecore