167 research outputs found

    Data Mining to Understand Customer Behaviour in Usage of Mobile Applications Services

    Get PDF
    Customer usage data produced by mobile applications and mobile phones contain valuable knowledge about users and market. Such knowledge can help companies to conduct customer acquisition. Using customer personal data exacted from both mobile applications and telecoms operator, this study tries to investigate the features of the valuable potential customer by using the integrated data mining methods. The findings will help the developer to identify the value of different groups and target worthy potential customers. Such knowledge will also enable developers to offer personalized promotions and marketing information to potential customers. The mobile application using behaviour and mobile-service performance data also helps the developer of the mobile application and telecoms operator to utilize each other’s resource to extend their customer base. The approach balances complexity with ease of use and thus facilitates the developer to make use of user usage behaviour data to improve marketing decisions

    ECGadv: Generating Adversarial Electrocardiogram to Misguide Arrhythmia Classification System

    Full text link
    Deep neural networks (DNNs)-powered Electrocardiogram (ECG) diagnosis systems recently achieve promising progress to take over tedious examinations by cardiologists. However, their vulnerability to adversarial attacks still lack comprehensive investigation. The existing attacks in image domain could not be directly applicable due to the distinct properties of ECGs in visualization and dynamic properties. Thus, this paper takes a step to thoroughly explore adversarial attacks on the DNN-powered ECG diagnosis system. We analyze the properties of ECGs to design effective attacks schemes under two attacks models respectively. Our results demonstrate the blind spots of DNN-powered diagnosis systems under adversarial attacks, which calls attention to adequate countermeasures.Comment: Accepted by AAAI 202

    Approaches for Identifying Consumer Preferences for the Design of Technology Products: A Case Study of Residential Solar Panels

    Get PDF
    This paper investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential photovoltaic panels is performed in the context of the California, USA, market within the 2007–2011 time span. First, interviews are conducted with solar panel installers to gain a better understanding of the solar industry. Second, a revealed preference method is implemented using actual market data and technical specifications to extract preferences. The approach is explored with three machine learning methods: Artificial neural networks (ANN), Random Forest decision trees, and Gradient Boosted regression. Finally, a stated preference self-explicated survey is conducted, and the results using the two methods compared. Three common critical attributes are identified from a pool of 34 technical attributes: power warranty, panel efficiency, and time on market. From the survey, additional nontechnical attributes are identified: panel manufacturer's reputation, name recognition, and aesthetics. The work shows that a combination of revealed and stated preference methods may be valuable for identifying both technical and nontechnical attributes to guide design priorities.Center for Scalable and Integrated Nanomanufacturin

    Approaches for identifying consumer preferences for the design of technology products : a case study of residential solar panels

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 91-94).This thesis investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential solar PV panels is conducted in the context of the California, USA market within the 2007-2011 time span. First, interviews are conducted with solar panel installers to gain a better understanding of the solar industry. Second, a revealed preference method is implemented using actual market data and technical specifications to extract preferences. The approach is explored with three machine learning methods: Artificial Neural Networks, Random Forest decision trees, and Gradient Boosted regression. Finally, a stated preference self-explicated survey is conducted, and the results using the two methods compared. Three common critical attributes are identified from a pool of 34 technical attributes: power warranty, panel efficiency, and time on market. From the survey, additional non-technical attributes are identified: panel manufacturer's reputation, name recognition, and aesthetics. The work shows that a combination of revealed and stated preference methods may be valuable for identifying both technical and non-technical attributes to guide design priorities.by Heidi Qianyi Chen.S.M

    Propagating Uncertainty in Solar Panel Performance for Life Cycle Modeling in Early Stage Design

    Get PDF
    One of the challenges in accurately applying metrics for life cycle assessment lies in accounting for both irreducible and inherent uncertainties in how a design will perform under real world conditions. This paper presents a preliminary study that compares two strategies, one simulation-based and one set-based, for propagating uncertainty in a system. These strategies for uncertainty propagation are then aggregated. This work is conducted in the context of an amorphous photovoltaic (PV) panel, using data gathered from the National Solar Radiation Database, as well as realistic data collected from an experimental hardware setup specifically for this study. Results show that the influence of various sources of uncertainty can vary widely, and in particular that solar radiation intensity is a more significant source of uncertainty than the efficiency of a PV panel. This work also shows both set-based and simulation-based approaches have limitations and must be applied thoughtfully to prevent unrealistic results. Finally, it was found that aggregation of the two uncertainty propagation methods provided faster results than either method alone.Center for Scalable and Integrated NanomanufacturingNational Science Foundation (U.S.) (Nanoscale Science and Engineering Center

    FedDD: Toward Communication-efficient Federated Learning with Differential Parameter Dropout

    Full text link
    Federated Learning (FL) requires frequent exchange of model parameters, which leads to long communication delay, especially when the network environments of clients vary greatly. Moreover, the parameter server needs to wait for the slowest client (i.e., straggler, which may have the largest model size, lowest computing capability or worst network condition) to upload parameters, which may significantly degrade the communication efficiency. Commonly-used client selection methods such as partial client selection would lead to the waste of computing resources and weaken the generalization of the global model. To tackle this problem, along a different line, in this paper, we advocate the approach of model parameter dropout instead of client selection, and accordingly propose a novel framework of Federated learning scheme with Differential parameter Dropout (FedDD). FedDD consists of two key modules: dropout rate allocation and uploaded parameter selection, which will optimize the model parameter uploading ratios tailored to different clients' heterogeneous conditions and also select the proper set of important model parameters for uploading subject to clients' dropout rate constraints. Specifically, the dropout rate allocation is formulated as a convex optimization problem, taking system heterogeneity, data heterogeneity, and model heterogeneity among clients into consideration. The uploaded parameter selection strategy prioritizes on eliciting important parameters for uploading to speedup convergence. Furthermore, we theoretically analyze the convergence of the proposed FedDD scheme. Extensive performance evaluations demonstrate that the proposed FedDD scheme can achieve outstanding performances in both communication efficiency and model convergence, and also possesses a strong generalization capability to data of rare classes

    StreamFunnel: Facilitating Communication Between a VR Streamer and Many Spectators

    Full text link
    The increasing adoption of Virtual Reality (VR) systems in different domains have led to a need to support interaction between many spectators and a VR user. This is common in game streaming, live performances, and webinars. Prior CSCW systems for VR environments are limited to small groups of users. In this work, we identify problems associated with interaction carried out with large groups of users. To address this, we introduce an additional user role: the co-host. They mediate communications between the VR user and many spectators. To facilitate this mediation, we present StreamFunnel, which allows the co-host to be part of the VR application's space and interact with it. The design of StreamFunnel was informed by formative interviews with six experts. StreamFunnel uses a cloud-based streaming solution to enable remote co-host and many spectators to view and interact through standard web browsers, without requiring any custom software. We present results of informal user testing which provides insights into StreamFunnel's ability to facilitate these scalable interactions. Our participants, who took the role of a co-host, found that StreamFunnel enables them to add value in presenting the VR experience to the spectators and relaying useful information from the live chat to the VR user.Comment: 12 pages, 7 figure

    Explicit Correspondence Matching for Generalizable Neural Radiance Fields

    Full text link
    We present a new generalizable NeRF method that is able to directly generalize to new unseen scenarios and perform novel view synthesis with as few as two source views. The key to our approach lies in the explicitly modeled correspondence matching information, so as to provide the geometry prior to the prediction of NeRF color and density for volume rendering. The explicit correspondence matching is quantified with the cosine similarity between image features sampled at the 2D projections of a 3D point on different views, which is able to provide reliable cues about the surface geometry. Unlike previous methods where image features are extracted independently for each view, we consider modeling the cross-view interactions via Transformer cross-attention, which greatly improves the feature matching quality. Our method achieves state-of-the-art results on different evaluation settings, with the experiments showing a strong correlation between our learned cosine feature similarity and volume density, demonstrating the effectiveness and superiority of our proposed method. Code is at https://github.com/donydchen/matchnerfComment: Code and pre-trained models: https://github.com/donydchen/matchnerf Project Page: https://donydchen.github.io/matchnerf
    • …
    corecore