1,021 research outputs found
Glycerol-3-phosphate acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice
Lipid molecules are key structural components of plant male reproductive organs, such as the anther and pollen. Although advances have been made in the understanding of acyl lipids in plant reproduction, the metabolic pathways of other lipid compounds, particularly glycerolipids, are not fully understood. Here we report that an endoplasmic reticulum-localized enzyme, Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3), plays an indispensable role in anther development and pollen formation in rice. OsGPAT3 is preferentially expressed in the tapetum and microspores of the anther. Compared with wild-type plants, the osgpat3 mutant displays smaller, pale yellow anthers with defective anther cuticle, degenerated pollen with defective exine, and abnormal tapetum development and degeneration. Anthers of the osgpat3 mutant have dramatic reductions of all aliphatic lipid contents. The defective cuticle and pollen phenotype coincide well with the down-regulation of sets of genes involved in lipid metabolism and regulation of anther development. Taking these findings together, this work reveals the indispensable role of a monocot-specific glycerol-3-phosphate acyltransferase in male reproduction in rice.Xiao Men, Jianxin Shi, Wanqi Liang, Qianfei Zhang, Gaibin Lian, Sheng Quan, Lu Zhu, Zhijing Luo, Mingjiao Chen, Dabing Zhan
Co
Different loading rates of photocatalysts Co3O4/C3N4 were prepared by calcination method. Their photocatalytic performances were evaluated by the degradation of methyl blue under visible light irradiation. The results show that the introduction of Co3O4 significantly improves the optical absorption properties of C3N4, which is beneficial to the separation of photogenerated electrons and holes on the surface of catalyst. The prepared Co3O4/C3N4 for visible photocatalytic degradation of methyl blue has higher catalytic efficiency than that of pure C3N4 or pure Co3O4. The best cobalt loading rate was 30% when the concentration of methylene blue was 40 mg/L. Recycling rate of 30% Co3O4/C3N4 composite catalyst was studied. After 4 cycles, the degradation rate was only slightly decreased from 86.8% to 82.8%, indicating the catalyst with good photostability and repeatability.nbs
Efficiency optimization in a correlation ratchet with asymmetric unbiased fluctuations
The efficiency of a Brownian particle moving in periodic potential in the
presence of asymmetric unbiased fluctuations is investigated. We found that
there is a regime where the efficiency can be a peaked function of temperature,
which proves that thermal fluctuations facilitate the efficiency of energy
transformation, contradicting the earlier findings (H. kamegawa et al. Phys.
Rev. Lett. 80 (1998) 5251). It is also found that the mutual interplay between
asymmetry of fluctuation and asymmetry of the potential may induce optimized
efficiency at finite temperature. The ratchet is not most efficiency when it
gives maximum current.Comment: 10 pages, 7 figure
Size-resolved and bulk activation properties of aerosols in the North China Plain
Size-resolved and bulk activation properties of aerosols were measured at a regional/suburban site in the North China Plain (NCP), which is occasionally heavily polluted by anthropogenic aerosol particles and gases. A Cloud Condensation Nuclei (CCN) closure study is conducted with bulk CCN number concentration (NCCN) and calculated CCN number concentration based on the aerosol number size distribution and size-resolved activation properties.
The observed CCN number concentration (NCCN-obs) are higher than those observed in other locations than China, with average NCCN-obs of roughly 2000, 3000, 6000, 10 000 and 13 000 cm−3 at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.70%, respectively. An inferred critical dry diameter (Dm) is calculated based on the NCCN-obs and aerosol number size distribution assuming homogeneous chemical composition. The inferred cut-off diameters are in the ranges of 190–280, 160–260, 95–180, 65–120 and 50–100 nm at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.7%, with their mean values 230.1, 198.4, 128.4, 86.4 and 69.2 nm, respectively.
Size-resolved activation measurements show that most of the 300 nm particles are activated at the investigated supersaturations, while almost no particles of 30 nm are activated even at the highest supersaturation of 0.72%. The activation ratio increases with increasing supersaturation and particle size. The slopes of the activation curves for ambient aerosols are not as steep as those observed in calibrations with ammonium sulfate suggesting that the observed aerosols is an external mixture of more hygroscopic and hydrophobic particles.
The calculated CCN number concentrations (NCCN-calc) based on the size-resolved activation ratio and aerosol number size distribution correlate well with the NCCN-obs, and show an average overestimation of 19%. Sensitivity studies of the CCN closure show that the NCCN at each supersaturation is well predicted with the campaign average of size-resolved activation curves. These results indicate that the aerosol number size distribution is critical in the prediction of possible CCN. The CCN number concentration can be reliably estimated using time-averaged, size-resolved activation efficiencies without accounting for the temporal variations
Size-resolved and bulk activation properties of aerosols in the North China Plain
Size-resolved and bulk activation properties of aerosols were measured at a regional/suburban site in the North China Plain (NCP), which is occasionally heavily polluted by anthropogenic aerosol particles and gases. A Cloud Condensation Nuclei (CCN) closure study is conducted with bulk CCN number concentration (<i>N</i><sub>CCN</sub>) and calculated CCN number concentration based on the aerosol number size distribution and size-resolved activation properties. <br><br> The observed CCN number concentration (<i>N</i><sub>CCN-obs</sub>) are higher than those observed in other locations than China, with average <i>N</i><sub>CCN-obs</sub> of roughly 2000, 3000, 6000, 10 000 and 13 000 cm<sup>−3</sup> at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.70%, respectively. An inferred critical dry diameter (<i>D</i><sub>m</sub>) is calculated based on the <i>N</i><sub>CCN-obs</sub> and aerosol number size distribution assuming homogeneous chemical composition. The inferred cut-off diameters are in the ranges of 190–280, 160–260, 95–180, 65–120 and 50–100 nm at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.7%, with their mean values 230.1, 198.4, 128.4, 86.4 and 69.2 nm, respectively. <br><br> Size-resolved activation measurements show that most of the 300 nm particles are activated at the investigated supersaturations, while almost no particles of 30 nm are activated even at the highest supersaturation of 0.72%. The activation ratio increases with increasing supersaturation and particle size. The slopes of the activation curves for ambient aerosols are not as steep as those observed in calibrations with ammonium sulfate suggesting that the observed aerosols is an external mixture of more hygroscopic and hydrophobic particles. <br><br> The calculated CCN number concentrations (<i>N</i><sub>CCN-calc</sub>) based on the size-resolved activation ratio and aerosol number size distribution correlate well with the <i>N</i><sub>CCN-obs</sub>, and show an average overestimation of 19%. Sensitivity studies of the CCN closure show that the <i>N</i><sub>CCN</sub> at each supersaturation is well predicted with the campaign average of size-resolved activation curves. These results indicate that the aerosol number size distribution is critical in the prediction of possible CCN. The CCN number concentration can be reliably estimated using time-averaged, size-resolved activation efficiencies without accounting for the temporal variations
Recommended from our members
SURF: understanding and predicting urban convection and haze
Urbanization modifies atmospheric energy and moisture balances, forming distinct features, e.g., urban heat islands (UHIs) and enhanced or decreased precipitation. These produce significant challenges to science and society, including rapid and intense flooding, heat waves strengthened by UHIs, and air pollutant haze. The Study of Urban-Impacts on Rainfall and Fog/Haze (SURF) has brought together international expertise on observations and modeling, meteorology and atmospheric chemistry, and research and operational forecasting. The SURF overall science objective is a better understanding of urban, terrain, convection, and aerosol interactions for improved forecast accuracy. Specific objectives include: a) promoting cooperative international research to improve understanding of urban summer convective precipitation and winter particulate episodes via extensive field studies; b) improving high-resolution urban weather and air quality forecast-models; and c) enhancing urban weather forecasts for societal applications, e.g., health, energy, hydrologic, climate change, air quality, planning, and emergency-response management. Preliminary SURF observational and modeling results are shown, i.e., turbulent PBL structure, bifurcating thunderstorms, haze events, urban canopy model development, and model forecast evaluatio
Drugs and herbs given to prevent hepatotoxicity of tuberculosis therapy: systematic review of ingredients and evaluation studies
Background: Drugs to protect the liver are frequently prescribed in some countries as part of treatment for tuberculosis. The biological rationale is not clear, they are expensive and may do harm. We conducted a systematic review to a) describe the ingredients of "liver protection drugs"; and b) compare the evidence base for the policy against international standards.
Methods: We searched international medical databases (MEDLINE, EMBASE, LILACS, CINAHL, Cochrane Central Register of Controlled Trials, and the specialised register of the Cochrane Infectious Diseases Group) and Chinese language databases (CNKI, VIP and WanFang) to April 2007. Our inclusion criteria were research papers that reported evaluating any liver protection drug or drugs for preventing liver damage in people taking anti-tuberculosis treatment. Two authors independently categorised and extracted data, and appraised the stated methods of evaluating their effectiveness.
Results: Eighty five research articles met our inclusion criteria, carried out in China (77), India (2), Russia (4), Ukraine (2). These articles evaluated 30 distinct types of liver protection compounds categorised as herbal preparations, manufactured herbal products, combinations of vitamins and other non-herbal substances and manufactured pharmaceutical preparations. Critical appraisal of these articles showed that all were small, poorly conducted studies, measuring intermediate outcomes. Four trials that were described as randomised controlled trials were small, had short follow up, and did not meet international standards.
Conclusion: There is no reliable evidence to support prescription of drugs or herbs to prevent liver damage in people on tuberculosis treatment
The Role of Bulk and Interface Recombination in High‐Efficiency Low‐Dimensional Perovskite Solar Cells
2D Ruddlesden–Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite-based cells. Herein, 2D (CH(CH)NH)(CHNH)PbI perovskite cells with different numbers of [PbI] sheets (n = 2–4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open-circuit voltage (V) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi-Fermi level splitting matches the device V within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements
Suppression of Allograft Rejection by Tim-1-Fc through Cross-Linking with a Novel Tim-1 Binding Partner on T Cells
Engagement of T-cell immunoglobulin mucin (Tim)-1 on T cells with its ligand, Tim-4, on antigen presenting cells delivers positive costimulatory signals to T cells. However, the molecular mechanisms for Tim-1-mediated regulation of T-cell activation and differentiation are relatively poorly understood. Here we investigated the role of Tim-1 in T-cell responses and allograft rejection using recombinant human Tim-1 extracellular domain and IgG1-Fc fusion proteins (Tim-1-Fc). In vitro assays confirmed that Tim-1-Fc selectively binds to CD4+ effector T cells, but not dendritic cells or natural regulatory T cells (nTregs). Tim-1-Fc was able to inhibit the responses of purified CD4+ T cells that do not express Tim-4 to stimulation by anti-CD3/CD28 mAbs, and this inhibition was associated with reduced AKT and ERK1/2 phosphorylation, but it had no influence on nTregs. Moreover, Tim-1-Fc inhibited the proliferation of CD4+ T cells stimulated by allogeneic dendritic cells. Treatment of recipient mice with Tim-1-Fc significantly prolonged cardiac allograft survival in a fully MHC-mismatched strain combination, which was associated with impaired Th1 response and preserved Th2 and nTregs function. Importantly, the frequency of Foxp3+ cells in splenic CD4+ T cells was increased, thus shifting the balance toward regulators, even though Tim-1-Fc did not induce Foxp3 expression in CD4+CD25− T cells directly. These results indicate that Tim-1-Fc can inhibit T-cell responses through an unknown Tim-1 binding partner on T cells, and it is a promising immunosuppressive agent for preventing allograft rejection
The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication
High oil and protein content make tetraploid peanut a leading oil and food legume. Here we report a high-quality peanut genome sequence, comprising 2.54 Gb with 20 pseudomolecules and 83,709 protein-coding gene models. We characterize gene functional groups implicated in seed size evolution, seed oil content, disease resistance and symbiotic nitrogen fixation. The peanut B subgenome has more genes and general expression dominance, temporally associated with long-terminal-repeat expansion in the A subgenome that also raises questions about the A-genome progenitor. The polyploid genome provided insights into the evolution of Arachis hypogaea and other legume chromosomes. Resequencing of 52 accessions suggests that independent domestications formed peanut ecotypes. Whereas 0.42–0.47 million years ago (Ma) polyploidy constrained genetic variation, the peanut genome sequence aids mapping and candidate-gene discovery for traits such as seed size and color, foliar disease resistance and others, also providing a cornerstone for functional genomics and peanut improvement
- …