50 research outputs found

    Mutation of NIMA-related kinase 1 (NEK1) leads to chromosome instability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>NEK1, the first mammalian ortholog of the fungal protein kinase never-in-mitosis A (NIMA), is involved early in the DNA damage sensing/repair pathway. A defect in DNA repair in NEK1-deficient cells is suggested by persistence of DNA double strand breaks after low dose ionizing radiation (IR). NEK1-deficient cells also fail to activate the checkpoint kinases CHK1 and CHK2, and fail to arrest properly at G1/S or G2/M-phase checkpoints after DNA damage.</p> <p>Results</p> <p>We show here that NEK1-deficient cells suffer major errors in mitotic chromosome segregation and cytokinesis, and become aneuploid. These NEK1-deficient cells transform, acquire the ability to grow in anchorage-independent conditions, and form tumors when injected into syngeneic mice. Genomic instability is also manifest in <it>NEK1 </it>+/- mice, which late in life develop lymphomas with a much higher incidence than wild type littermates.</p> <p>Conclusion</p> <p>NEK1 is required for the maintenance of genome stability by acting at multiple junctures, including control of chromosome stability.</p

    BRCA1 the Versatile Defender: Molecular to Environmental Perspectives

    Get PDF
    The evolving history of BRCA1 research demonstrates the profound interconnectedness of a single protein within the web of crucial functions in human cells. Mutations in BRCA1, a tumor suppressor gene, have been linked to heightened breast and ovarian cancer risks. However, despite decades of extensive research, the mechanisms underlying BRCA1’s contribution to tissue-specific tumor development remain elusive. Nevertheless, much of the BRCA1 protein’s structure, function, and interactions has been elucidated. Individual regions of BRCA1 interact with numerous proteins to play roles in ubiquitination, transcription, cell checkpoints, and DNA damage repair. At a cellular scale, these BRCA1 functions coordinate tumor suppression, R-loop prevention, and cellular differentiation, all of which may contribute to BRCA1’s role in cancer tissue specificity. As research on BRCA1 and breast cancer continues to evolve, it will become increasingly evident that modern materials such as Bisphenol A should be examined for their relationship with DNA stability, cancer incidence, and chemotherapy. Overall, this review offers a comprehensive understanding of BRCA1’s many roles at a molecular, cellular, organismal, and environmental scale. We hope that the knowledge gathered here highlights both the necessity of BRCA1 research and the potential for novel strategies to prevent and treat cancer in individuals carrying BRCA1 mutations

    The Link between Autosomal Dominant Polycystic Kidney Disease and Chromosomal Instability: Exploring the Relationship.

    No full text
    In autosomal dominant polycystic kidney disease (ADPKD) with germline mutations in a PKD1 or PKD2 gene, innumerable cysts develop from tubules, and renal function deteriorates. Second-hit somatic mutations and renal tubular epithelial (RTE) cell death are crucial features of cyst initiation and disease progression. Here, we use established RTE lines and primary ADPKD cells with disease-associated PKD1 mutations to investigate genomic instability and DNA damage responses. We found that ADPKD cells suffer severe chromosome breakage, aneuploidy, heightened susceptibility to DNA damage, and delayed checkpoint activation. Immunohistochemical analyses of human kidneys corroborated observations in cultured cells. DNA damage sensors (ATM/ATR) were activated but did not localize at nuclear sites of damaged DNA and did not properly activate downstream transducers (CHK1/CHK2). ADPKD cells also had the ability to transform, as they achieved high saturation density and formed colonies in soft agar. Our studies indicate that defective DNA damage repair pathways and the somatic mutagenesis they cause contribute fundamentally to the pathogenesis of ADPKD. Acquired mutations may alternatively confer proliferative advantages to the clonally expanded cell populations or lead to apoptosis. Further understanding of the molecular details of aberrant DNA damage responses in ADPKD is ongoing and holds promise for targeted therapies

    Increased Nek1 expression in renal cell carcinoma cells is associated with decreased sensitivity to DNA-damaging treatment.

    No full text
    Renal cell carcinoma (RCC) is a heterogeneous disease with resistance to systemic chemotherapy. Elevated expression of multiple drug resistance (MDR) has been suggested to be one of the mechanisms for this resistance. Here, we provide an alternative mechanism to explain RCC's resistance to chemotherapy-induced apoptosis. Never-in mitosis A-related protein kinase 1 (Nek1) plays an important role in DNA damage response and proper checkpoint activation. The association of Nek1 with the voltage-dependent anion channel (VDAC1) is a critical determinant of cell survival following DNA-damaging treatment. We report here that Nek1 is highly expressed in RCC tumor and cultured RCC cells compared to that of normal renal tubular epithelial cells (RTE). The association between Nek1 and VDAC1 is genotoxic dependent: prolonged Nek1/VDAC1 dissociation will lead to VDAC1 dephosphorylation and initiate apoptosis. Down-regulation of Nek1 expression in RCC cells enhanced their sensitivity to DNA-damaging treatment. Collectively, these results suggest that the increased Nek1 expression in RCC cells maintain persistent VDAC1 phosphorylation, closing its channel and preventing the onset of apoptosis under genotoxic insults. Based on these results, we believe that Nek1 can serve as a potential therapeutic target for drug development in the treatment of RCC
    corecore