18,984 research outputs found

    Aharonov-Bohm oscillations in the local density of states

    Full text link
    The scattering of electrons with inhomogeneities produces modulations in the local density of states of a metal. We show that electron interference contributions to these modulations are affected by the magnetic field via the Aharonov-Bohm effect. This can be exploited in a simple STM setup that serves as an Aharonov-Bohm interferometer at the nanometer scale.Comment: 4 pages, 2 figures. v2 added reference

    A Killing tensor for higher dimensional Kerr-AdS black holes with NUT charge

    Full text link
    In this paper, we study the recently discovered family of higher dimensional Kerr-AdS black holes with an extra NUT-like parameter. We show that the inverse metric is additively separable after multiplication by a simple function. This allows us to separate the Hamilton-Jacobi equation, showing that geodesic motion is integrable on this background. The separation of the Hamilton-Jacobi equation is intimately linked to the existence of an irreducible Killing tensor, which provides an extra constant of motion. We also demonstrate that the Klein-Gordon equation for this background is separable.Comment: LaTeX, 14 pages. v2: Typo corrected and equation added. v3: Reference added, introduction expanded, published versio

    FMRI Clustering and False Positive Rates

    Full text link
    Recently, Eklund et al. (2016) analyzed clustering methods in standard FMRI packages: AFNI (which we maintain), FSL, and SPM [1]. They claimed: 1) false positive rates (FPRs) in traditional approaches are greatly inflated, questioning the validity of "countless published fMRI studies"; 2) nonparametric methods produce valid, but slightly conservative, FPRs; 3) a common flawed assumption is that the spatial autocorrelation function (ACF) of FMRI noise is Gaussian-shaped; and 4) a 15-year-old bug in AFNI's 3dClustSim significantly contributed to producing "particularly high" FPRs compared to other software. We repeated simulations from [1] (Beijing-Zang data [2], see [3]), and comment on each point briefly.Comment: 3 pages, 1 figure. A Letter accepted in PNA

    Approximate Well-supported Nash Equilibria below Two-thirds

    Get PDF
    In an epsilon-Nash equilibrium, a player can gain at most epsilon by changing his behaviour. Recent work has addressed the question of how best to compute epsilon-Nash equilibria, and for what values of epsilon a polynomial-time algorithm exists. An epsilon-well-supported Nash equilibrium (epsilon-WSNE) has the additional requirement that any strategy that is used with non-zero probability by a player must have payoff at most epsilon less than the best response. A recent algorithm of Kontogiannis and Spirakis shows how to compute a 2/3-WSNE in polynomial time, for bimatrix games. Here we introduce a new technique that leads to an improvement to the worst-case approximation guarantee

    ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179^\star

    Get PDF
    We present our high-resolution (0.15×0.130^{\prime\prime}.15\times0^{\prime\prime}.13, \sim34 pc) observations of the CO(6-5) line emission, which probes the warm and dense molecular gas, and the 434 μ\mum dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO(6-5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circum-nuclear rotating gas disk, with 90% of the rotation speed arising within a radius of 150\lesssim150 pc. At the scale of our spatial resolution, the CO(6-5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of \sim10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the Southwest to Northeast spatial gradient of both CO-to-dust continuum ratio and Pa-α\alpha equivalent width. Within the nuclear region (radius\sim300 pc) and with a resolution of \sim34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180±18180\pm18 Jy km/s (71±771\pm7 mJy), which account for 22% (2.4%) of the total value measured by Herschel.Comment: Accepted for publication in Ap
    corecore