383 research outputs found

    A Meta-Evaluation of C/W/L/A Metrics: System Ranking Similarity, System Ranking Consistency and Discriminative Power

    Full text link
    Recently, Moffat et al. proposed an analytic framework, namely C/W/L/A, for offline evaluation metrics. This framework allows information retrieval (IR) researchers to design evaluation metrics through the flexible combination of user browsing models and user gain aggregations. However, the statistical stability of C/W/L/A metrics with different aggregations is not yet investigated. In this study, we investigate the statistical stability of C/W/L/A metrics from the perspective of: (1) the system ranking similarity among aggregations, (2) the system ranking consistency of aggregations and (3) the discriminative power of aggregations. More specifically, we combined various aggregation functions with the browsing model of Precision, Discounted Cumulative Gain (DCG), Rank-Biased Precision (RBP), INST, Average Precision (AP) and Expected Reciprocal Rank (ERR), examing their performances in terms of system ranking similarity, system ranking consistency and discriminative power on two offline test collections. Our experimental result suggests that, in terms of system ranking consistency and discriminative power, the aggregation function of expected rate of gain (ERG) has an outstanding performance while the aggregation function of maximum relevance usually has an insufficient performance. The result also suggests that Precision, DCG, RBP, INST and AP with their canonical aggregation all have favourable performances in system ranking consistency and discriminative power; but for ERR, replacing its canonical aggregation with ERG can further strengthen the discriminative power while obtaining a system ranking list similar to the canonical version at the same time

    MR-GNN: Multi-Resolution and Dual Graph Neural Network for Predicting Structured Entity Interactions

    Full text link
    Predicting interactions between structured entities lies at the core of numerous tasks such as drug regimen and new material design. In recent years, graph neural networks have become attractive. They represent structured entities as graphs and then extract features from each individual graph using graph convolution operations. However, these methods have some limitations: i) their networks only extract features from a fix-sized subgraph structure (i.e., a fix-sized receptive field) of each node, and ignore features in substructures of different sizes, and ii) features are extracted by considering each entity independently, which may not effectively reflect the interaction between two entities. To resolve these problems, we present MR-GNN, an end-to-end graph neural network with the following features: i) it uses a multi-resolution based architecture to extract node features from different neighborhoods of each node, and, ii) it uses dual graph-state long short-term memory networks (L-STMs) to summarize local features of each graph and extracts the interaction features between pairwise graphs. Experiments conducted on real-world datasets show that MR-GNN improves the prediction of state-of-the-art methods.Comment: Accepted by IJCAI 201

    Digital Fashion Metamorphosis: Fold and Unfold

    Get PDF
    The constraints of the current COVID-19 pandemic stimulate the urge for fashion brands and designers to explore 3D technology and utilizing digital space for fashion creation. Being a fashion designer, this urge inspires me to situate my thesis project at the intersection of fashion and technology. I use research-creation as a research approach to engage differently with digital fashion design creation. During my research, I stumbled upon the ancient technique of origami and was drawn to the intricate technique it holds. I also see the possibility embedded in further manipulating the form of origami in digital space through image-based 3D reconstruction photogrammetry technique and 3D software. This thesis project aims to explore how digital body and digitized origami can be combined as an innovative method to influence and create digital fashion design. The creative outcome, Neo-Metamorphosis is a video formatted origami-inspired futuristic fashion runway show. Overall, my thesis project aims to explore new perspectives of digital fashion and stimulate artistic inspiration

    GP-Localize: Persistent Mobile Robot Localization using Online Sparse Gaussian Process Observation Model

    Full text link
    Central to robot exploration and mapping is the task of persistent localization in environmental fields characterized by spatially correlated measurements. This paper presents a Gaussian process localization (GP-Localize) algorithm that, in contrast to existing works, can exploit the spatially correlated field measurements taken during a robot's exploration (instead of relying on prior training data) for efficiently and scalably learning the GP observation model online through our proposed novel online sparse GP. As a result, GP-Localize is capable of achieving constant time and memory (i.e., independent of the size of the data) per filtering step, which demonstrates the practical feasibility of using GPs for persistent robot localization and autonomy. Empirical evaluation via simulated experiments with real-world datasets and a real robot experiment shows that GP-Localize outperforms existing GP localization algorithms.Comment: 28th AAAI Conference on Artificial Intelligence (AAAI 2014), Extended version with proofs, 10 page
    • …
    corecore