152 research outputs found

    A Genetic Variant in miR-196a2 Increased Digestive System Cancer Risks: A Meta-Analysis of 15 Case-Control Studies

    Get PDF
    <div><h3>Background</h3><p>MicroRNAs (miRNAs) negatively regulate the gene expression and act as tumor suppressors or oncogenes in oncogenesis. The association between single nucleotide polymorphism (SNP) in miR-196a2 rs11614913 and the susceptibility of digestive system cancers was inconsistent in previous studies.</p> <h3>Methodology/Principal Findings</h3><p>An updated meta-analysis based on 15 independent case-control studies consisting of 4999 cancer patients and 7606 controls was performed to address this association. It was found that miR-196a2 polymorphism significantly elevated the risks of digestive system cancers (CT vs. TT, OR = 1.25, 95% CI = 1.07–1.45; CC vs. TT, OR = 1.38, 95% CI = 1.13–1.67; CC/CT vs. TT, OR = 1.29, 95% CI = 1.10–1.50; CC vs. CT/TT, OR = 1.14, 95% CI = 1.01–1.30; C vs. T, OR = 1.15, 95% CI = 1.05–1.26). We also found that variant in miR-196a2 increased the susceptibility of colorectal cancer (CRC) (CT vs. TT, OR = 1.23, 95% CI = 1.04–1.44; CC vs. TT, OR = 1.32, 95% CI = 1.08–1.61; CC/CT vs. TT, OR = 1.25, 95% CI = 1.07–1.46; C vs. T, OR = 1.15, 95% CI = 1.05–1.28), while the association in recessive model (CC vs. CT/TT, OR = 1.16, 95% CI = 0.98–1.38) showed a marginal significance. Additionally, significant association between miR-196a2 polymorphism and increased risk of hepatocellular cancer (HCC) was detected. By stratifying tumors on the basis of site of origin, source of controls, ethnicity and allele frequency in controls, elevated cancer risks were observed.</p> <h3>Conclusion/Significance</h3><p>Our findings suggest the significant association between miR-196a2 polymorphism and increased susceptibility of digestive system cancers, especially of CRC, HCC and Asians. Besides, C allele may contribute to increased digestive cancer risks.</p> </div

    A Genetic Approach to the Motion Planning of Redundant Mobile Manipulator Systems Considering Safety and Configuration

    Get PDF
    This paper presents a genetic algorithm approach to multi-criteria motion planning of a mobile manipulator system considering position and configuration optimisation. Travelling distance and path safety are considered in planning the motion of the mobile system. A wave front expansion algorithm is used to build the numerical potential fields for both the goal and obstacles by representing the workspace as a grid. The unsafeness of a grid point is defined as the numerical potential produced by obstacles. For multi-criteria position and configuration optimisation, obstacle avoidance, least torque norm, manipulability and torque distribution are considered. The emphasis is put on using genetic algorithms to search for global optimum and solve the minimax problem for torque distribution. Various simulation results from two examples show that the proposed genetic algorithm approach performs better than conventional methods

    ImFace++: A Sophisticated Nonlinear 3D Morphable Face Model with Implicit Neural Representations

    Full text link
    Accurate representations of 3D faces are of paramount importance in various computer vision and graphics applications. However, the challenges persist due to the limitations imposed by data discretization and model linearity, which hinder the precise capture of identity and expression clues in current studies. This paper presents a novel 3D morphable face model, named ImFace++, to learn a sophisticated and continuous space with implicit neural representations. ImFace++ first constructs two explicitly disentangled deformation fields to model complex shapes associated with identities and expressions, respectively, which simultaneously facilitate the automatic learning of correspondences across diverse facial shapes. To capture more sophisticated facial details, a refinement displacement field within the template space is further incorporated, enabling a fine-grained learning of individual-specific facial details. Furthermore, a Neural Blend-Field is designed to reinforce the representation capabilities through adaptive blending of an array of local fields. In addition to ImFace++, we have devised an improved learning strategy to extend expression embeddings, allowing for a broader range of expression variations. Comprehensive qualitative and quantitative evaluations demonstrate that ImFace++ significantly advances the state-of-the-art in terms of both face reconstruction fidelity and correspondence accuracy.Comment: Project page: https://github.com/MingwuZheng/ImFace/tree/imface%2B%2B. arXiv admin note: text overlap with arXiv:2203.1451

    Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging

    Get PDF
    The purpose of this study was to evaluate dendrimer-entrapped gold nanoparticles [Au DENPs] as a molecular imaging [MI] probe for computed tomography [CT]. Au DENPs were prepared by complexing AuCl4- ions with amine-terminated generation 5 poly(amidoamine) [G5.NH2] dendrimers. Resulting particles were sized using transmission electron microscopy. Serial dilutions (0.001 to 0.1 M) of either Au DENPs or iohexol were scanned by CT in vitro. Based on these results, Au DENPs were injected into mice, either subcutaneously (10 μL, 0.007 to 0.02 M) or intravenously (300 μL, 0.2 M), after which the mice were imaged by micro-CT or a standard mammography unit. Au DENPs prepared using G5.NH2 dendrimers as templates are quite uniform and have a size range of 2 to 4 nm. At Au concentrations above 0.01 M, the CT value of Au DENPs was higher than that of iohexol. A 10-μL subcutaneous dose of Au DENPs with [Au] ≥ 0.009 M could be detected by micro-CT. The vascular system could be imaged 5 and 20 min after injection of Au DENPs into the tail vein, and the urinary system could be imaged after 60 min. At comparable time points, the vascular system could not be imaged using iohexol, and the urinary system was imaged only indistinctly. Findings from this study suggested that Au DENPs prepared using G5.NH2 dendrimers as templates have good X-ray attenuation and a substantial circulation time. As their abundant surface amine groups have the ability to bind to a range of biological molecules, Au DENPs have the potential to be a useful MI probe for CT

    Natural selection and functional diversification of the epidermal growth factor receptorEGFR family in vertebrates

    Get PDF
    AbstractBackgroundGenes that have been subject to adaptive evolution can produce varying degrees of pathology or differing symptomatology. ErbB family receptor activation will initiate a number of downstream signaling pathways, such as mitogen-activated protein kinase (MAPK), activator of transcription (STAT), the modulation of calcium channels, and so on, all of which lead to aggressive tumor behavior. However, the evolutionary mechanisms operating in the retention of ErbB family genes and the changes in selection pressures are not clear.ResultsSixty-two full-length cDNA sequences from 27 vertebrate species were extracted from the UniProt protein database, NCBI's GenBank and the Ensembl database. The result of phylogenetic analysis showed that the four ErbB family members in vertebrates might be formed by gene duplication. In order to determine the mode of evolution in vertebrates, selection analysis and functional divergence analysis were combined to explain the relationship of the site-specific evolution and functional divergence in the vertebrate ErbB family. Our results indicate that the acceleration of asymmetric evolutionary rates and purifying selection together were the main force for the production of ErbBs, and positive selections were detected in the ErbB family.ConclusionAn evolutional phylogeny of 27 vertebrates was presented in our study; the tree showed that the genes have evolved through duplications followed by purifying selection, except for seven sites, which evolved by positive selection. There was one common site with positive selection and functional divergence. In the process of functional differentiation evolving through gene duplication, relaxed selection may play an important part

    Leakage-resilient Attribute-based Encryptions with Fast Decryption: Model, Analysis and Construction

    Get PDF
    raditionally, in attribute-based encryption (ABE), an access structure is constructed from a linear secret sharing scheme (LSSS), a boolean formula or an access tree. In this work, we encode the access structure as their minimal sets, which is equivalent to the existence of a smallest monotonic span program for the characteristic function of the same access structure. We present two leakage-resilient attribute-based encryption schemes, ciphertext-policy ABE (LR-CP-ABE) and key-policy ABE (LR-KP-ABE), that can tolerate private key and master key to be partially leaked. By using our encoding mechanism, we obtain short ciphertext in LR-CP-ABE and short key in LR-KP-ABE. Also, our schemes have higher decryption efficiency in that the decryption cost is independent to the depth of access structures. Meanwhile, our proposed schemes provide the tolerance of both master key leakage and continual leakage in the sense that there are many master keys for universal set Σ\Sigma and many private keys per attribute set §\S. We explicitly employ a refresh algorithm to update a (master) key while the leakage information will beyond the allowable leakage bound. The schemes are proven to be adaptively leakage-resilient secure in the standard model under the static assumptions in composite order bilinear groups

    Evaluating the Functionality of Conjunctiva Using a Rabbit Dry Eye Model

    Get PDF
    Purpose. To assess the conjunctival functionality in a rabbit dry eye (DE) model. Methods. Nictitating membrane, lacrimal and Harderian glands were surgically excised from male New Zealand white rabbits using minimally invasive surgery. Fluorescein/rose Bengal staining of ocular surface (OS) and Schirmer test were done before (BE) and after excision (AE). The expression of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, and MUC5AC proteins were estimated by immunoblotting from conjunctival impression cytology specimens. MUC5AC mRNA was quantified as well. The effect of epithelial sodium channel (ENaC) blockers on tear production and potential differences (PD) of OS were assessed under anesthesia in rabbits with and without surgery. Results. Increase in corneal and conjunctival staining was observed 1 month AE compared to BE. Schirmer tests failed to show decrease in tear production. Elevated IL-1β, and TNF-α, 1 month AE indicated inflammation. MUC5AC expression was elevated 1 month AE. ENaC blockers did not improve tear production in rabbit eyes AE but characteristic changes in PD were observed in rabbits with surgery. Conclusions. DE biomarkers are important tools for OS assessment and MUC5AC expression is elevated in rabbit DE. PD measurement revealed significant electrophysiological changes in rabbits with surgery
    • …
    corecore