25,625 research outputs found
Distinct functions of integrin alpha and beta subunit cytoplasmic domains in cell spreading and formation of focal adhesions.
Integrin-mediated cell adhesion often results in cell spreading and the formation of focal adhesions. We exploited the capacity of recombinant human alpha IIb beta 3 integrin to endow heterologous cells with the ability to adhere and spread on fibrinogen to study the role of integrin cytoplasmic domains in initiation of cell spreading and focal adhesions. The same constructs were also used to analyze the role of the cytoplasmic domains in maintenance of the fidelity of the integrin repertoire at focal adhesions. Truncation mutants of the cytoplasmic domain of alpha IIb did not interfere with the ability of alpha IIb beta 3 to initiate cell spreading and form focal adhesions. Nevertheless, deletion of the alpha IIb cytoplasmic domain allowed indiscriminate recruitment of alpha IIb beta 3 to focal adhesions formed by other integrins. Truncation of the beta 3 subunit cytoplasmic domain abolished cell spreading mediated by alpha IIb beta 3 and also abrogated recruitment of alpha IIb beta 3 to focal adhesions. This truncation also dramatically impaired the ability of alpha IIb beta 3 to mediate the contraction of fibrin gels. In contrast, the beta 3 subunit cytoplasmic truncation did not reduce the fibrinogen binding affinity of alpha IIb beta 3. Thus, the integrin beta 3 subunit cytoplasmic domain is necessary and sufficient for initiation of cell spreading and focal adhesion formation. Further, the beta 3 cytoplasmic domain is required for the transmission of intracellular contractile forces to fibrin gels. The alpha subunit cytoplasmic domain maintains the fidelity of recruitment of the integrins to focal adhesions and thus regulates their repertoire of integrins
Pricing in Social Networks with Negative Externalities
We study the problems of pricing an indivisible product to consumers who are
embedded in a given social network. The goal is to maximize the revenue of the
seller. We assume impatient consumers who buy the product as soon as the seller
posts a price not greater than their values of the product. The product's value
for a consumer is determined by two factors: a fixed consumer-specified
intrinsic value and a variable externality that is exerted from the consumer's
neighbors in a linear way. We study the scenario of negative externalities,
which captures many interesting situations, but is much less understood in
comparison with its positive externality counterpart. We assume complete
information about the network, consumers' intrinsic values, and the negative
externalities. The maximum revenue is in general achieved by iterative pricing,
which offers impatient consumers a sequence of prices over time.
We prove that it is NP-hard to find an optimal iterative pricing, even for
unweighted tree networks with uniform intrinsic values. Complementary to the
hardness result, we design a 2-approximation algorithm for finding iterative
pricing in general weighted networks with (possibly) nonuniform intrinsic
values. We show that, as an approximation to optimal iterative pricing, single
pricing can work rather well for many interesting cases, but theoretically it
can behave arbitrarily bad
Mol-CycleGAN - a generative model for molecular optimization
Designing a molecule with desired properties is one of the biggest challenges
in drug development, as it requires optimization of chemical compound
structures with respect to many complex properties. To augment the compound
design process we introduce Mol-CycleGAN - a CycleGAN-based model that
generates optimized compounds with high structural similarity to the original
ones. Namely, given a molecule our model generates a structurally similar one
with an optimized value of the considered property. We evaluate the performance
of the model on selected optimization objectives related to structural
properties (presence of halogen groups, number of aromatic rings) and to a
physicochemical property (penalized logP). In the task of optimization of
penalized logP of drug-like molecules our model significantly outperforms
previous results
Distribution of carbon monoxide-producing neurons in human colon and in Hirschsprung's disease patients
Hirschsprung's disease (HSCR) is characterized by the absence of ganglion cells and impaired relaxation of the gut. Nitric oxide (NO) and, more recently, carbon monoxide (CO) have been identified as inhibitory neurotransmitters causing relaxation. A deficiency in NO has been reported in aganglionic gut; we hypothesized that CO could also be involved in impaired gut motility in HSCR. The aim of the study was to determine the distribution of CO-and NO-producing enzymes in the normal and aganglionic gut. We performed laser capture microdissection, reverse transcription-polymerase chain reaction, and immunohistochemistry on colon biopsies of normal controls (n = 9) and patients with HSCR (n = 10). The mRNA expression of heme oxygenase-2 (HO-2), immunoreactivities of HO-2 and NO synthase, was determined and compared. Results show a high level of expression of HO-2 mRNA localized in the myenteric plexus. Expression of HO-2 mRNA was also detected in the mucosa, submucosa, and muscular layer. Down-regulation of HO-2 mRNA expression was detected in the aganglionic colon. Immunoreactivities of HO-2 and NO synthase were localized mainly to the ganglion plexus and to nerve fibers within the muscle in the control colons and normoganglionic colons. HO-2-containing neurons were more abundant than NO synthase-containing neurons in the myenteric plexus. Nearly all of the NO synthase-containing neurons also contained HO-2. HO-2 and NO synthase were selectively absent in the myenteric and submucosal regions and in the muscle of the aganglionic colon. Our findings suggest involvement of both CO and NO in the pathophysiology of HSCR. Copyright 2002, Elsevier Science (USA). All rights reserved.postprin
Comparison of 20nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages
Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies
A new adaptive interpolation algorithm for 3D ultrasound imaging with speckle reduction and edge preservation
Author name used in this publication: Qinghua HuangAuthor name used in this publication: Yongping ZhengAuthor name used in this publication: Minhua Lu2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
Platinum binding preferences dominate the binding of novel polyamide amidine anthraquinone platinum(II) complexes to DNA
Complexes incorporating a threading anthraquinone intercalator with pyrrole lexitropsin and platinum(II) moieties attached were developed with the goal of generating novel DNA binding modes, including the targeting of AT-rich regions in order to have high cytotoxicities. The binding of the complexes to DNA has been investigated and profiles surprisingly similar to that for cisplatin were observed; the profiles were different to those for a complex lacking the pyrrole lexitropsin component. The lack of selective binding to AT-rich regions suggests the platinum binding was dominating the sequence selectivity, and is consistent with the pyrrole lexitropsin slowing intercalation. The DNA unwinding profiles following platinum binding were evaluated by gel electrophoresis and suggested that intercalation and platinum binding were both occurring
- …