539 research outputs found

    The effects of family financial stress and primary caregivers' levels of acculturation on children's emotional and behavioral problems among humanitarian refugees in Australia

    Get PDF
    The present study evaluated the application of the basic and extended (incorporated primary caregivers’ levels of acculturation) Family Stress Model (FSM) to understand the effect of family financial stress and primary caregivers’ levels of acculturation on children’s emotional and behavioral problems among refugees in Australia. A total of 658 refugee children aged 5–17 and their primary caregivers (n = 410) from the third wave of a nationwide longitudinal project were included in this study. We used multilevel structural equation models with bootstrapping to test the indirect effects of family financial stress and caregivers’ levels of acculturation (including English proficiency, self-sufficiency, social interaction, and self-identity) on children’s emotional and behavioral problems through caregivers’ psychological distress and parenting styles. The results showed that the extended FSM improved the model fit statistics, explaining 45.8% variation in children’s emotional and behavioral problems. Family financial stress, caregivers’ English proficiency, and self-identity had indirect effects on children’s emotional and behavioral problems through caregivers’ psychological distress and hostile parenting. The findings showed that interventions aimed at reducing caregivers’ psychological distress and negative parenting could be effective in alleviating the adverse effects of family financial stress and caregivers’ low levels of acculturation on refugee children’s mental health

    Effects of bioturbation on the erodibility of cohesive versus non-cohesive sediments along a current-velocity gradient: A case study on cockles

    Get PDF
    Soft-bottom bioturbators are ecosystem engineers in the sense that they can have considerable effects on sediment erodibility and resuspension. The common cockle Cerastoderma edule is a bioturbating filter feeder that is widespread along the European Atlantic coastline. Its presence and activity can decrease sediment erosion thresholds in cohesive sediments but little is known about its effect on non-cohesive sediments. Using controlled annular flume experiments, we investigated the relative effects of different cockle densities on sediment re suspension in cohesive vs. non-cohesive sediments by assessing the following: (i) the mud and sand burrowing behavior of cockles, (ii) critical erosion thresholds, (iii) the mass of eroded sediment and (iv) erosion rates. Our results show that cackles were more active in non-cohesive sediment compared with cohesive sediment. Despite their lower activity, the presence of cockles in cohesive sediment increased sediment erodibility by reducing the critical erosion threshold (U-crit) and increasing both the mass of eroded sediment and erosion rate. In contrast, cockles had no effect on erodibility in non-cohesive sediment, especially on the eroded sediment mass and erosion rate. The mass eroded was not significantly different between cohesive and non-cohesive sediments when cockles were present. Our experiments show that the increased erodibility of cohesive sediment due to the. bioturbation by cockles is density dependent: higher cockle density results in stronger effects on erodibility. Moreover, this increase in cohesive sediment erosion due to cockle bioturbation was positively correlated with current velocity. In contrast, the erosion of non-cohesive sediment only depended on the current stress and was unaffected by cockle density. Considering the high abundance of C. edule, its widespread distribution and its extensive activities, the results of this study could be widely applicable to intertidal mud flats around the world.</p

    Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor

    Get PDF
    Commercial wearable piezoelectric sensors possess excellent anti-interference stability due to their electronic packaging. However, this packaging renders them barely breathable and compromises human comfort. To address this issue, we develop a PVDF piezoelectric nanoyarns with an ultrahigh strength of 313.3 MPa, weaving them with different yarns to form three-dimensional piezoelectric fabric (3DPF) sensor using the advanced 3D textile technology. The tensile strength (46.0 MPa) of 3DPF exhibits the highest among the reported flexible piezoelectric sensors. The 3DPF features anti-gravity unidirectional liquid transport that allows sweat to move from the inner layer near to the skin to the outer layer in 4 s, resulting in a comfortable and dry environment for the user. It should be noted that sweating does not weaken the piezoelectric properties of 3DPF, but rather enhances. Additionally, the durability and comfortability of 3DPF are similar to those of the commercial cotton T-shirts. This work provides a strategy for developing comfortable flexible wearable electronic devices

    Streptozotocin-Induced Early Thermal Hyperalgesia is independent of Glycemic State of Rats: Role of Transient Receptor Potential Vanilloid 1(TRPV1) and Inflammatory mediators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Streptozotocin (STZ) is used as a common tool to induce diabetes and to study diabetes-induced complications including diabetic peripheral neuropathy (DPN). Previously, we have reported that STZ induces a direct effect on neurons through expression and function of the Transient receptor potential vanilloid 1 (TRPV1) channel in sensory neurons resulting in thermal hyperalgesia, even in non-diabetic STZ-treated mice. In the present study, we investigated the role of expression and function of TRPV1 in the central sensory nerve terminals in the spinal cord in STZ-induced hyperalgesia in rats.</p> <p>Results</p> <p>We found that a proportion of STZ-treated rats were normoglycemic but still exhibited thermal hyperalgesia and mechanical allodynia. Immunohistochemical data show that STZ treatment, irrespective of glycemic state of the animal, caused microglial activation and increased expression of TRPV1 in spinal dorsal horn. Further, there was a significant increase in the levels of pro-inflammatory mediators (IL-1β, IL-6 and TNF-ι) in spinal cord tissue, irrespective of the glycemic state. Capsaicin-stimulated release of calcitonin gene related peptide (CGRP) was significantly higher in the spinal cord of STZ-treated animals. Intrathecal administration of resiniferatoxin (RTX), a potent TRPV1 agonist, significantly attenuated STZ-induced thermal hyperalgesia, but not mechanical allodynia. RTX treatment also prevented the increase in TRPV1-mediated neuropeptide release in the spinal cord tissue.</p> <p>Conclusions</p> <p>From these results, it is concluded that TRPV1 is an integral component of initiating and maintaining inflammatory thermal hyperalgesia, which can be alleviated by intrathecal administration of RTX. Further, the results suggest that enhanced expression and inflammation-induced sensitization of TRPV1 at the spinal cord may play a role in central sensitization in STZ-induced neuropathy.</p

    Expansion microscopy of zebrafish for neuroscience and developmental biology studies

    Get PDF
    Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and development. Regarding neuroscience, we found that ExM enabled the tracing of fine processes of radial glia, which are not resolvable with diffraction-limited microscopy. ExM further resolved putative synaptic connections, as well as molecular differences between densely packed synapses. Finally, ExM could resolve subsynaptic protein organization, such as ring-like structures composed of glycine receptors. Regarding development, we used ExM to characterize the shapes of nuclear invaginations and channels, and to visualize cytoskeletal proteins nearby. We detected nuclear invagination channels at late prophase and telophase, potentially suggesting roles for such channels in cell division. Thus, ExM of the larval and embryonic zebrafish may enable systematic studies of how molecular components are configured in multiple contexts of interest to neuroscience and developmental biology.National Institutes of Health (U.S.) (Grant 1R01EB024261)National Institutes of Health (U.S.) (Grant 1R01MH110932)National Institutes of Health (U.S.) (Grant 2R01DA029639)National Institutes of Health (U.S.) (Grant 1R01NS087950)National Institutes of Health (U.S.) (Grant 1U01MH106011

    SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses

    SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses

    Model construction of medical endoscope service evaluation system-based on the analysis of Delphi method

    Get PDF
    Background: Medical endoscope is widely used in clinical practice for the purpose of diagnosis and treatment, occupying around 5% of the medical device market. Evaluating the true service level of medical endoscope is essential and necessary to improve overall performance of medical diagnosis and treatment, and to maintain competitiveness of endoscope manufacturers, however, such a tool is not available in the market. This study develops an Evaluation Index System (EIS) to assess service level of medical endoscope, and to provide suggestions for improving the service level through the Delphi method. Methods: Firstly, the possible factors influencing the service level were identified from literature review. In parallel, the Delphi expert method questionnaire was designed and 25 experts were invited to conduct three rounds of questionnaire, to evaluate and rate the possible factors. Finally, we determined the weights associated with the factors, using the analytic hierarchy process (AHP) and percentage method, and developed the service level EIS. Results: The EIS consists of 3 first-level indicators, 24 s-level indicators and 68 third-level indicators. According to the weights computed using AHP, first-level indicators are ranked as post-sale (0.62), in-sale (0.25) and pre-sale (0.13). Through case verification, the medical endoscope brand Olympus had a total score of 4.17, Shanghai Aohua had a total score of 3.71, and Shanghai Chengyun had a total score of 3.28, which matches its market popularity and ranking in terms of market share. The results obtained from the EIS are consistent with the reality. Conclusions: The EIS established in this study is comprehensive, reliable and reasonable with strong practicality. The EIS can act as a tool for the endoscope users to evaluate potential products and make informed choices. It also provides a measurable basis for endoscope manufacturers and service providers to improve service quality
    • …
    corecore