171 research outputs found

    Incremental Collaborative Beam Alignment for Millimeter Wave Cell-Free MIMO Systems

    Full text link
    Millimeter wave (mmWave) cell-free MIMO achieves an extremely high rate while its beam alignment (BA) suffers from excessive overhead due to a large number of transceivers. Recently, user location and probing measurements are utilized for BA based on machine learning (ML) models, e.g., deep neural network (DNN). However, most of these ML models are centralized with high communication and computational overhead and give no specific consideration to practical issues, e.g., limited training data and real-time model updates. In this paper, we study the {probing} beam-based BA for mmWave cell-free MIMO downlink with the help of broad learning (BL). For channels without and with uplink-downlink reciprocity, we propose the user-side and base station (BS)-side BL-aided incremental collaborative BA approaches. Via transforming the centralized BL into a distributed learning with data and feature splitting respectively, the user-side and BS-side schemes realize implicit sharing of multiple user data and multiple BS features. Simulations confirm that the user-side scheme is applicable to fast time-varying and/or non-stationary channels, while the BS-side scheme is suitable for systems with low-bandwidth fronthaul links and a central unit with limited computing power. The advantages of proposed schemes are also demonstrated compared to traditional and DNN-aided BA schemes.Comment: 15 pages, 15 figures, to appear in the IEEE Transactions on Communications, 202

    Selecting a single model or combining multiple models for microarray-based classifier development? – A comparative analysis based on large and diverse datasets generated from the MAQC-II project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic biomarkers play an increasing role in both preclinical and clinical application. Development of genomic biomarkers with microarrays is an area of intensive investigation. However, despite sustained and continuing effort, developing microarray-based predictive models (i.e., genomics biomarkers) capable of reliable prediction for an observed or measured outcome (i.e., endpoint) of unknown samples in preclinical and clinical practice remains a considerable challenge. No straightforward guidelines exist for selecting a single model that will perform best when presented with unknown samples. In the second phase of the MicroArray Quality Control (MAQC-II) project, 36 analysis teams produced a large number of models for 13 preclinical and clinical endpoints. Before external validation was performed, each team nominated one model per endpoint (referred to here as 'nominated models') from which MAQC-II experts selected 13 'candidate models' to represent the best model for each endpoint. Both the nominated and candidate models from MAQC-II provide benchmarks to assess other methodologies for developing microarray-based predictive models.</p> <p>Methods</p> <p>We developed a simple ensemble method by taking a number of the top performing models from cross-validation and developing an ensemble model for each of the MAQC-II endpoints. We compared the ensemble models with both nominated and candidate models from MAQC-II using blinded external validation.</p> <p>Results</p> <p>For 10 of the 13 MAQC-II endpoints originally analyzed by the MAQC-II data analysis team from the National Center for Toxicological Research (NCTR), the ensemble models achieved equal or better predictive performance than the NCTR nominated models. Additionally, the ensemble models had performance comparable to the MAQC-II candidate models. Most ensemble models also had better performance than the nominated models generated by five other MAQC-II data analysis teams that analyzed all 13 endpoints.</p> <p>Conclusions</p> <p>Our findings suggest that an ensemble method can often attain a higher average predictive performance in an external validation set than a corresponding “optimized” model method. Using an ensemble method to determine a final model is a potentially important supplement to the good modeling practices recommended by the MAQC-II project for developing microarray-based genomic biomarkers.</p

    Identifying Unexpected Therapeutic Targets via Chemical-Protein Interactome

    Get PDF
    Drug medications inevitably affect not only their intended protein targets but also other proteins as well. In this study we examined the hypothesis that drugs that share the same therapeutic effect also share a common therapeutic mechanism by targeting not only known drug targets, but also by interacting unexpectedly on the same cryptic targets. By constructing and mining an Alzheimer's disease (AD) drug-oriented chemical-protein interactome (CPI) using a matrix of 10 drug molecules known to treat AD towards 401 human protein pockets, we found that such cryptic targets exist. We recovered from CPI the only validated therapeutic target of AD, acetylcholinesterase (ACHE), and highlighted several other putative targets. For example, we discovered that estrogen receptor (ER) and histone deacetylase (HDAC), which have recently been identified as two new therapeutic targets of AD, might already have been targeted by the marketed AD drugs. We further established that the CPI profile of a drug can reflect its interacting character towards multi-protein sets, and that drugs with the same therapeutic attribute will share a similar interacting profile. These findings indicate that the CPI could represent the landscape of chemical-protein interactions and uncover “behind-the-scenes” aspects of the therapeutic mechanisms of existing drugs, providing testable hypotheses of the key nodes for network pharmacology or brand new drug targets for one-target pharmacology paradigm
    corecore