26 research outputs found

    Enhancing Mixed Traffic Flow Safety Via Connected and Autonomous Vehicle Trajectory Planning with a Reinforcement Learning Approach

    Get PDF
    The longitudinal trajectory planning of connected and autonomous vehicle (CAV) has been widely studied in the literature to reduce travel time or fuel consumptions. The safety impact of CAV trajectory planning to the mixed traffic flow with both CAV and human-driven vehicle (HDV), however, is not well understood yet. This study presents a reinforcement learning modeling approach, named Monte Carlo tree search-based autonomous vehicle safety algorithm, or MCTS-AVS, to optimize the safety of mixed traffic flow, on a one-lane roadway with signalized intersection control. Crash potential index (CPI) is defined to quantitively measure the safety performance of the mixed traffic flow. The CAV trajectory planning problem is firstly formulated as an optimization model; then, the solution procedure based on reinforcement learning is proposed. The tree-expansion determination module and rollout termination module are developed to identify and reduce the unnecessary tree expansion, so as to train the model more efficiently towards the desired direction. The case study results showed that the proposed algorithm was able to reduce the CPI by 76.56%, when compared with a benchmark model without any intelligence, and 12.08%, when compared with another benchmark model that the team developed earlier. These results demonstrated the satisfactory performance of the proposed algorithm in enhancing the safety of the mixed traffic flow

    Multi-Objective Optimization of Traffic Signal Timing for Oversaturated Intersection

    Get PDF
    For the purpose of improving the efficiency of traffic signal control for isolate intersection under oversaturated conditions, a multi-objective optimization algorithm for traffic signal control is proposed. Throughput maximum and average queue ratio minimum are selected as the optimization objectives of the traffic signal control under oversaturated condition. A simulation environment using VISSIM SCAPI was utilized to evaluate the convergence and the optimization results under various settings and traffic conditions. It is written by C++/CRL to connect the simulation software VISSIM and the proposed algorithm. The simulation results indicated that the signal timing plan generated by the proposed algorithm has good efficiency in managing the traffic flow at oversaturated intersection than the commonly utilized signal timing optimization software Synchro. The update frequency applied in the simulation environment was 120 s, and it can meet the requirements of signal timing plan update in real filed. Thus, the proposed algorithm has the capability of searching Pareto front of the multi-objective problem domain under both normal condition and over-saturated condition

    Optimization of the Design of Pre-Signal System Using Improved Cellular Automaton

    Get PDF
    The pre-signal system can improve the efficiency of intersection approach under rational design. One of the main obstacles in optimizing the design of pre-signal system is that driving behaviors in the sorting area cannot be well evaluated. The NaSch model was modified by considering slow probability, turning-deceleration rules, and lane changing rules. It was calibrated with field observed data to explore the interactions among design parameters. The simulation results of the proposed model indicate that the length of sorting area, traffic demand, signal timing, and lane allocation are the most important influence factors. The recommendations of these design parameters are demonstrated. The findings of this paper can be foundations for the design of pre-signal system and show promising improvement in traffic mobility

    Deviation of Peak Hours for Urban Rail Transit Stations: A Case Study in Xi’an, China

    No full text
    The inconsistencies of passenger flow volume between stations’ peak hours and cities’ peak hours have emerged as a phenomenon in various cities worldwide. Passenger flow forecasting at planning stages can only predict passenger flow volume in city peak hours and for the whole day. For some stations, the highest flow does not occur in the city peak hours, and station scale design is often too small. This study locates the formation mechanism of station peak in which the temporal distribution of the station is the superposition of different temporal distributions of the purpose determined by land-use attributes. Data from 63 stations in Xi’an, China, were then used to present an enlargement coefficient which can change the boarding and alighting volume in city peak hours to a station’s own peak hours. This was done by analyzing the inconsistencies of passenger flow volume between the station’s peak hours and the city’s peak hours. Morning peak deviation coefficient (PDC) and evening PDC were selected as datasets, and stations were classified accordingly. Statistics of land usage for every type of station showed that when the stations were surrounded by developed land, the relationship between the PDC and the commuter travel land proportion was to some extent orderly. More than 90.00% of stations with a proportion of commuter travel land that was more than 0.50 had PDCs under 1.10. All stations with a proportion of commuter travel land that was less than 0.50 had morning PDCs over 1.10. Finally, data from 52 stations in Chongqing, China were used to verify the findings, with the results in Chongqing predominantly corresponding to those in Xi’an

    Mountainous Freeway Risk Degree Forecast Model of Case Study: Changjin Freeway in Jiangxi Province

    No full text
    Abstract: The objective of this study is to establish the mountainous freeway risk degree forecast model. Highway safety, especially mountainous freeway, relates to person, vehicle, road and environment four aspects including many factors. Firstly, this study analyzed some researches about the highway safety from these four aspects respectively. Secondly, this study considered many factors of these four aspects, established the mountainous freeway risk degree forecast model, listed the survey content needed in the forecast model. Finally, this study took Changjin Freeway in Jiangxi Province, China as example, used 91 accident data from January, 2006 to July, 2012, adopted the multiple linear regression method using spss 17.0 to obtain each parameter value of the forecast model and analyzed some parameter values to the mountainous freeway safety. The mountainous freeway risk degree forecast model is necessary and useful to evaluate the risk degree for constructed mountainous freeway, to estimate the safety of unconstructed mountainous freeway and to provide basis to improve mountainous freeway safety

    A review of the measurement of URTN resilience.

    No full text
    The assessment of the resilience of Urban Rail Transit Networks (URTNs) and the analysis of their evolutionary characteristics during network growth can help in the design of efficient, safe, and sustainable networks. However, there have been few studies regarding the change of resilience in long-term network development. As for the existing resilience studies, they rarely consider the entire cycle of accident occurrence and repair; furthermore, they ignore the changes in network transportation performance during emergencies. Moreover, the measurement metrics of the important nodes have not been comprehensively considered. Therefore, to remedy these deficiencies, this paper proposes a URTN dynamic resilience assessment model that integrates the entire cycle of incident occurrence and repair, and introduces the network transport effectiveness index E(Gw) to quantitatively assess the network resilience. In addition, a weighted comprehensive identification method of the important nodes (the WH method) is proposed. The application considers the Xi’an urban rail transit network (XURTN) during 2011–2021. The obtained results identify the resilience evolutionary characteristics during network growth. And longer peripheral lines negatively affect the resilience of XURTN during both the attack and the repair processes. The central city network improves the damage index Rdam and the recovery index Rrec by up to 123.46% and 11.65%, respectively, over the overall network. In addition, the WH method can comprehensively and accurately identify the important nodes in the network and their evolutionary characteristics. Compared to the single-factor and topological strategies, the Rdam is 1.17%~178.89% smaller and the Rrec is 1.68%~84.81% larger under the WH strategy. Therefore, this method improves the accuracy of the important node identification. Overall, the insights from this study can provide practical and scientific references for the synergistic development of URTN and urban space, the enhancement of network resilience, and the protection and restoration of important nodes.</div

    The spatiotemporal expansion of the 2011–2021 XURTN.

    No full text
    The spatiotemporal expansion of the 2011–2021 XURTN.</p

    The change of network <i>E</i>(<i>G</i><sup><i>w</i></sup>) under WH max strategy during network evolution.

    No full text
    A: Attack central city network, B: Attack overall network, C: Recover central city network, D: Recover overall network.</p
    corecore