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+e longitudinal trajectory planning of connected and autonomous vehicle (CAV) has been widely studied in the literature to
reduce travel time or fuel consumptions. +e safety impact of CAV trajectory planning to the mixed traffic flow with both CAV
and human-driven vehicle (HDV), however, is not well understood yet. +is study presents a reinforcement learning modeling
approach, named Monte Carlo tree search-based autonomous vehicle safety algorithm, or MCTS-AVS, to optimize the safety of
mixed traffic flow, on a one-lane roadway with signalized intersection control. Crash potential index (CPI) is defined to
quantitively measure the safety performance of the mixed traffic flow. +e CAV trajectory planning problem is firstly formulated
as an optimization model; then, the solution procedure based on reinforcement learning is proposed. +e tree-expansion de-
termination module and rollout termination module are developed to identify and reduce the unnecessary tree expansion, so as to
train the model more efficiently towards the desired direction.+e case study results showed that the proposed algorithm was able
to reduce the CPI by 76.56%, when compared with a benchmark model without any intelligence, and 12.08%, when compared
with another benchmark model that the team developed earlier. +ese results demonstrated the satisfactory performance of the
proposed algorithm in enhancing the safety of the mixed traffic flow.

1. Introduction

Connected and automated vehicles (CAVs) have been
demonstrated to have great potentials for future trans-
portation systems [1–4]. Compared with human-driven
vehicles (HDVs), CAVs behave accurately as they are
controlled by the computer algorithms, and their trajectories
can be adjusted with predefined intelligence to achieve
objectives such as minimizing delays and/or fuel con-
sumptions at roadway intersections. +is process is named
longitudinal trajectory planning and is an important task to
realize the full potentials of CAVs. Data from on-board
equipment (e.g., in-vehicle sensors, radar, camera, and lidar)

and remote facilities (e.g., DSRC/Cellular, GNSS/IMU, and
priori map) can be utilized to schedule CAV trajectory [5].

Plenty of studies on CAV longitudinal trajectory plan-
ning have been conducted. For example, Chen et al. [6]
proposed a centralized control method for CAVs by using a
cost function which included CAV safety, efficiency, and
ride comfort as the minimization objective. +e robust
platooning was formulated as a Min-Max Model Predictive
Control (MM-MPC) problem, where optimal accelerations
were generated to minimize this cost function. Wu et al. [7]
presented an optimal longitudinal control strategy for a
homogeneous CAV platoon. A linear-quadratic optimal
controller was designed considering a comprehensive
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perspective, including driving safety, efficiency, and ride
comfort, with three performance indicators including ve-
hicle gap error, relative speed, and desired acceleration.
Malikopoulos et al. [8] provided a decentralized theoretical
framework for coordination of CAVs. Rear-end, speed-
dependent safety constraint had been taken into account.
Research studies with similar objectives can also be found in
[9–15].

While significant progress on CAV longitudinal tra-
jectory planning can be observed in the abovementioned
literature, one thing that is largely missing is the impact of
CAV longitudinal trajectory planning algorithms to the
safety of traffic flow, and subsequently, how should we
design CAV longitudinal trajectory planning algorithms to
minimize the probability of crash occurrence. To clarify, in
most abovementioned works, the objective of trajectory
planning is usually to reduce travel time or fuel con-
sumption, and CAV safety is usually built in the model as a
constraint, rather than an objective. In addition, the con-
sideration of driving safety is usually limited to the CAV
itself, instead of the other HDVs in the traffic flow. However,
learning from the driving safety and human behavior re-
search, traffic crash happens most frequently when the
vehicles are changing speed, e.g., accelerating or decelerating
at intersections. In a mixed traffic flow environment with
both CAV and HDV, the CAV control algorithm will not
only impact the movement of the CAV, but, through traffic
flow shockwave propagation, will also influence the driving
behavior of the HDVs at upstream locations. As such, it
should be noted that the safety impact of CAV is not only
limited to the CAV itself but also to the surrounding HDVs
as well, and a good longitudinal trajectory planning algo-
rithm needs to consider all of these and aims to minimize the
crash potential of the entire traffic flow.

Methodologically, CAV trajectory scheduling is still a
sophisticated problem, considering the great challenges
from the highly stochastic nature of human driving be-
haviors and almost infinite decision-making states in real-
world mixed traffic context. One common and effective
approach to simplify the above complicate problem is to
divide a vehicle trajectory into several segments. In other
words, vehicles are usually set to the same cruising speed, or
with constant acceleration/deceleration, at each stage. For
example, He et al. [16] proposed a multistage approximation
control model to solve the optimal trajectory problem. First,
the vehicle cruised at the speed calculated by their algorithm
and then accelerated/decelerated to a final speed when
passing through the intersection. Wu et al. [17] divided the
whole vehicle control process into a sequence of control
stages and each control stage was formulated as an indi-
vidual optimal control problem involving spatial and tem-
poral constraints induced by the presence of vehicle queues.
In [18], the vehicle was supposed to accelerate to different
optimal cruising speeds by few speed guidance which also
divided the roadway. In [19], the roadway was separated into
three segments by two individual variable speed limits
(IVSL). After those IVSLs, vehicle speed was adjusted to a
final constant value so that their trajectories are smooth.

Similar method can be found in [20, 21], in which each
vehicle trajectory was broken into a few sections to de-
compose the originally hard trajectory design problem to a
simple one. Although the abovementioned approach does
make the model analytically solvable and help reduce the
computational burden, such assumptions sacrificed the
modeling realism and were not flexible to account for the
uncertainty of human driver behaviors in a mixed traffic
environment.

Considering the modeling techniques of trajectory
planning, the computational complexity and algorithm
runtime are directly related to modeling realism and the
market penetration rate (MPR) of CAV. One way to reduce
the complexity of the model is to only consider the pure
CAV traffic, i.e., a traffic environment without any HDVs. In
fact, large amounts of research studies on CAV trajectory
planning were under this assumption. For example, Lee and
Park [22] developed a CVIC algorithm for manipulating
individual automated vehicle into crossing an intersection
without colliding with other vehicles in a 100% MPR AVs
environment. Wang et al. [13] proposed a rolling horizon
control framework to control all vehicles’ trajectory, which
were equipped with driver assistance systems by optimizing
a cost function reflecting different control objectives. Under
the same assumption, Ahn et al. [23] developed an eco-drive
system that combines an eco-cruise control algorithm and
state-of-the-art car-following models. Zhou et al. [15]
proposed a reinforcement learning-based approach to train
a CAV platoon to pass through the intersection with a steady
speed.+e same research context can be found in [24–29]. In
the above research studies, although it was able to simplify
the model and improve calculation efficiency under the pure
CAV environment, the applicability of the models was
greatly reduced.

To deal with the abovementioned issues, this study
proposes a model-free trajectory planning approach for
improving the safety of mixed traffic flow of HDV and CAV,
named Monte Carlo tree search-based autonomous ve-
hicle safety algorithm, or MCTS-AVS. We quantify the
safety level of the mixed traffic flow by using crash po-
tential index (CPI) as the minimization objectives. +e
CAV trajectory planning problem is firstly formulated as
an optimization model, and then, a solution procedure
based on reinforcement learning is proposed. +e tree-
expansion determination module and rollout termination
module are developed to identify and reduce the un-
necessary tree expansion, so as to train the model more
efficiently towards the desired direction. +ese modeling
efforts lead to the improvement of algorithm solution
quality and safety performance. Finally, the proposed
algorithm was implemented and tested in a one-lane
roadway with signalized intersection control.

2. Notations

As a convenient reference, the mathematical notations used
in this section are presented below.
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t, T: discrete time step, and the time horizon
s(t): state at time t
aCAV(t), As(t): action of CAV, and set of all actions at
state s and time t
yi(t): the distance of vehicles i from roadway entrance,
at time t

Y(t): an array that stores vehicles’ distance from
roadway entrance, at time t

vi(t): the speed of vehicle i, at time t
V(t): an array that stores vehicles’ speed, at time t
dhi(t): the distance headway of vehicle i, at time t
D(t): an array that stores vehicles’ distance headway, at
time t
tg, ty, tr, tc: durations of green, yellow, and red signals,
and cycle length
Δt: the shortest time interval
vs: speed limit
lseg: length of the roadway segment
la: average vehicle length

3. Methodology

3.1. Model Formulation

3.1.1. Problem Setting and Decomposition. We believe that,
in the near future, the mixed traffic flow that composes of
multiple HDVs and CAVs traveling on arterial segment
will be a general scenario, as opposed to pure CAV traffic
flow. +is is because transitioning to fully CAV traffic
might be a time-consuming process. It also implies that we
will have a mixture of CAV and HDV in the mixed traffic
flow, and the traffic dynamics become complex. To sim-
plify the CAV control problem, this mixed traffic flow is
firstly decomposed into several “basic interactive unit
(BIU),” as illustrated in Figure 1. After the decomposition,
each CAV is involved in one BIU, and the rest of the
vehicles in the platoon are HDVs. In the Figure 1, the
number of HDVs might be one or multiple, or there might
be no CAV at all. As such, the mixed traffic flow problem
can be converted into a trajectory optimization problem
for each BIU, which significantly reduced the total com-
putational complexity.

+ere are two reasons for such decomposition. First, if an
HDV is driving in front of a CAV, due to the human nature,
it will drive according to speed limit or prevailing cruising
speed, and as a result, its behavior is not impacted by the
CAV behind it. Second, CAV is subjected to the speed limit
or current traffic conditions, as it cannot drive faster than a
typical HDV. On the contrary, when it slows down to a speed
that is lower than HDV, it becomes amoving bottleneck, and
all HDVs behind it are forced to slow down and follow this
CAV. To summarize, for mixed traffic flow control problem,
we will always have a CAV that is leading the platoon and
potentially multiple HDVs behind the CAV, in each basic
interactive unit. Such decomposition is also frequently used
in the previous literatures.

3.1.2. State Transition. To describe state transition, we
use s(t) � Y(t), V(t){ } to represent the state of mixed
traffic flow at time, where Y(t) � yi(t), i � 1, 2, . . . , k ,
V(t) � vi(t), i � 1, 2, . . . , k , and k is the total number
of vehicles. +en, vi(t) is updated by vi(t + 1) �

vi(t) + ai(t). CAV moves with action aCAV(t) ∈ As(t) at
time t. For the HDVs in the traffic flow, there are two
distinct scenarios: (1) when HDVs are relatively far away
from the intersection, their behaviors are mostly car-
following (CF) and can be described by the classic CF
model; (2) when HDVs are getting close to the inter-
section, the vehicle behaviors are subject to the signal
lights. In other words, vehicles will drive through the
intersection when the light is green or if they cannot come
to a safe stop when the yellow light is on. Otherwise, it will
slowdown and stop before the stop line. +e HDVs be-
havior of these two scenarios are illustrated in
Figures 2(a) and 2(b), and both of them follow the vehicle
constraints, including collision avoidance and speed
limit, as well as vehicle kinematics.

To describe the velocity decision-making of the HDVs
for the first scenario, the general GM model considering
stochastic HDVs behavior is employed. Compared with the
classic intelligent driver model (IDM) which was introduced
in [30], the GM model has the following advantages. (1)
Human perception reaction time, speed difference, and
space headway were involved in this model as a simple
structure. It enables HDV trajectories’ simulation rapidly
but without losing too much detail. (2) A random term to
reveal the uncertain factors of human drivers behavior was
also been considered.+is makes the model closer to the real
scenario and a higher applicability. +e specific formulation
of GM model is shown as

ai(t) � α∗ vi(t)
β Δvi t − treaction( 

Δxi t − treaction( 
c + ϵi(t), (1)

where ai(t) is the acceleration value of the human drive
vehicle i at time t, vi(t) is the vehicle’s speed, treaction de-
notes the human perception reaction time, Δvi(t − treaction)

is the speed difference between the target vehicle and its
leading vehicle at time (t − treaction), Δxi(t − treaction) is the
space headway, α, β, and c are the parameters to calibrate,
and ϵi(t) is a random term associated with vehicle i at time t.
Several researchers (e.g., [31]) calibrated these parameters
with collected data in real world. After Δt, state transition
s(t)⟶Δ t s(t + 1) is realized by

yi(t + 1) � yi(t) + vi(t) +
1
2

ai(t)t
2
, i � 1, 2, . . . , k. (2)

3.1.3. Crash Potential Index Function. Considering the
movement of the vehicles in the traffic, we divide the traffic
flow states into two types to further evaluate the safety
performance of the current state. In general, when the ve-
hicle velocity is less than the rear vehicle, two vehicles tend to
be close, and the traffic flow has potential crash risk. We
define this kind of state as a crash potential state, as shown
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on the left side of Figure 3. For example, when the signal
light changes from green to yellow, the leading vehicle slows
down and the traffic flow gets dense. On the contrary, when
the vehicle velocity is greater than or equal to the rear ve-
hicle, the distance headway will remain the same or increase,
and there is less risk of collision in this traffic. +is kind of
state is defined as a safe state. For example, when the signal
light changes from red to green, the leading vehicle begins to
accelerate and the distance headway increases gradually, as
shown on the right side of Figure 3.

To quantify the safety degree of a traffic flow, we defined
a crash potential index (CPI) function as

X(t) �


k

i�1
vi+1(t) − vi(t)( , i � 1, 2, . . . , k, if vi(t)< vi+1(t)

0, else,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where X(t) is the CPI value of this traffic flow at time t and k
is total number of vehicles. +e cumulative value considers
the above two states: the speed difference between two
adjacent vehicles is calculated when they are close to each
other or zero when the two adjacent vehicles are far away or

relatively slow. +is value directly reflects the overall crash
potential degree of the traffic flow.

3.1.4. Optimization Model. +e overall optimization prob-
lem is represented by

minimize 
T

t

X(t). (4)

+e feasible region for CAV action aCAV(t) at time t is
subjected to

yCAV(t + 1) � yCAV(t) + vCAV(t)

+
1
2

aCAV(t)t
2
, t � 0, 1, . . . , T,

(5a)

vCAV(t + 1) � vCAV(t) + aCAV(t), t � 0, 1, . . . , T, (5b)

aCAV(t)


≤A, t � 0, 1, . . . , T, (5c)

0≤ vCAV(t)≤ vs, t � 0, 1, . . . , T, (5d)

Change the
velocity or not

Car-following
model

Vehicles move
to new positon

Get the optimal
velocity

Vehicles at
current positon

(a)

Vehicles move
to new positon

Green light

Yellow light Remaining time is
enough or not

No

Yes

Keep the same
velocity

Slowdown to avoid
collision and stop

before the end
Red light

Vehicles at
current positon

(b)

Figure 2: HDVs’ behavior in roadway with signal control intersection. (a) HDVs are far from the signal light and (b) HDVs are close to the
signal light.

Start position Stop line

……

Mixed traffic with single CAV

Mixed traffic with multi-CAVs

Basic interactive unit

Figure 1: Decomposition of mixed traffic flow into basic interactive units.
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where T is the time at the end of mixed traffic flow travel
(e.g., get through an intersection). A is the upper limit of the
absolute value of CAV acceleration.

3.2. Solution Algorithm

3.2.1. UCT Formulation. +e problem in equations (4) and
(5) is a challenging nonlinear program (NLP) with a huge
state space, which makes the problem computationally in-
tractable. +is is because, at a given time t, the state of this
problem is defined by a list of specific input features to
describe the current system status and is required for any
reinforcement learning algorithm. For a mixed traffic flow,
many variables can be used to describe the state, for example,
vehicle’s distance from roadway entrance, vehicle velocity,
accelerations, spacing/time headways between vehicles,
elapsed time, and signal light color and their remaining
duration. Obviously, when more features are selected, more
details of the state will be captured. However, excessive
number of state elements may directly lead to an exponential
growth of the state space and lead to the “curse of di-
mensionality.” As a result, a huge state space will come with
a higher memory requirement and computational burden.
+erefore, the features have to be chosen carefully.

In this study, we choose to use a combination of time,
vehicle location, and vehicle speed to represent the time, in
which the vehicle location and speed are two arrays that
include information of all vehicles in the traffic flow.
However, even with these 3 limited variables, once we
discretize the time, space, and speed dimensions, this model
becomes high-dimensional in state and is very challenging to
solve and as such we have to rely on the reinforcement
learning approach. In this study, we developed a heuristic
algorithm, Monte Carlo tree search-based autonomous
vehicle safety algorithm, or MCTS-AVS, to solve this
problem by searching near-optimum action at every time
step for CAV.

Typical MCTS algorithm consists of four steps: selection,
expansion, simulation, and backpropagation [32, 33]. UCT
algorithm (upper confidence bounds for trees) is employed
to the first step of MCTS-AVS, as it can well balance the
dilemma between exploration and exploitation part of a
selection policy. +e underlying mechanism for UCT, which
is denoted by πUCT, is described by the following formula:

πUCT � argmax QUCT″ (s, a) � QUCT(s, a) + C

�������
ln(n(s))

n(s, a)



, a ∈ A
⎧⎨

⎩

⎫⎬

⎭,

(6)

where πUCT is the selected policy, s is system state, a is action,
A is the set for all actions, n(s) is the total number of times a
state s has been visited, n(s, a) is the number of times action
a has been selected in state s, QUCT(s, a) is the empirical
cumulative reward, averaged over all iterations, when action
a has been selected in state s, and C is a problem-dependent
parameter to control the balance between exploitation and
exploration. Equation (7) is defined to calculate the value of
reward Q(s, a):

Q(s, a) �


n(s,a)
i�1 Xi

n(s, a)
, (7)

where Xi denotes the reward of ith simulation associated
with action a. +e safety objective functions were modeled
by equation (3). +is objective is focused on the crash po-
tential index. +e expectation was that, by adjusting the
movement of CAV, the crash potential of the mixed traffic
flow can be reduced.

3.2.2. Tree-Expansion Determination Module. When CAV
launches a general MCTS algorithm, it will run four steps at
any time step. However, sometimes some operations were
neither necessary nor helpful in improving the solution
quality during the actual operation process. In other words,
if the traffic condition was not much changed compared with
the last moment, triggering of MCTS does not bring any new
information to the simulation, but instead may introduce
random noise and grow the tree towards an undesired di-
rection. Additionally, such operation brings significant
concerns to the algorithm run time and leads to a waste of
memory and CPU resources.

To determine when should the tree expansion be pro-
hibited, we analyze the “marginal impact” of a CAV
movement. While CAV performs an action, the HDV that is
immediately behind CAV would find a different time
headway, and thus, its speed might be adjusted according to
equation (8). To determine the degree of adjustment, we
perform the partial derivative and can derive the accelera-
tion/deceleration value as follows:

vi+2 (t)

vi+2 (t + 1) vi+1 (t + 1) vi (t + 1)

vi+1 (t) vi (t)

St

St+∆t

(a)

vi+2 (t)

vi+2 (t + 1) vi+1 (t + 1) vi (t + 1)

vi+1 (t) vi (t)

St

St+∆t

(b)

Figure 3: Two types state for a traffic flow: (a) crash potential state and (b) safe state.
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_V d
t
hi  �

zv
zd

� 16.8∗
z tanh0.0860 dhi(t) − 25(  + 0.913 

zd

� 1.448 1 − tanh
20.0860 dhi(t) − 25(  d dhi(t)( .

(8)

It should be noted that equation (8) merely quantifies the
impact of CAV to the vehicle that follows immediately
behind it. If multiple vehicles are following CAV, the impact
would propagate to the upstream vehicles in the form of
shockwave. As such, the total impact is the summation of all
vehicles behind CAV, i.e.,

_Sum(V) �  V dhi(t)( 

�  1.448∗ 1 − tanh
20.0860 dhi(t) − 25(  d dhi(t)( ,

(9)

and ∀i behind the CAV vehicle.

3.2.3. Rollout Termination Module. In the simulation step,
rapid rollout algorithm is employed to update Q(s, a) value
in equation (7) as follows. For a basic simulation, CAV
moves with an action that is drawn randomly from the
action set, until all vehicles successfully pass through the
intersection.+is final state is defined as the normal terminal
state and thus terminates the simulation process. However,
there are some special intermediate states, such as vehicle
crash or other kinds of traffic rule violation, after which the
simulation lost its practical significance.+ese final states are
defined as the abnormal terminal state that will also ter-
minate the simulation process. In order to further improve
the expansion efficiency of Monte Carlo tree and accelerate
the rollout algorithm, we create the rollout termination
module as equation (10) to identify abnormal terminal state
and to shorten the simulation period duration.

Simulation terminates if

minY(t)≥ ls + la, t � 0, 1, . . . , T, (10a)

minD(t)≤ 0, t � 0, 1, . . . , T, (10b)

∃yi(t) ∈ Y(t), t ∈ n∗ tc + tg + ty, (n + 1)∗ tc ,

n � 0, 1, . . . ,
(10c)

minV(t)< 0, t � 0, 1, . . . , T, (10d)

maxV(t)≥ vs, t � 0, 1, . . . , T. (10e)

+is module includes the following cases from equations
(10a)–(10e): all vehicles pass the stop line, crash, running red
light, reversing, and speeding. +e module can avoid un-
necessary simulation to reduce unnecessary expansion of the
search tree to improve the efficiency of the algorithm.
Figure 4 shows the influence of the rollout termination
module on the structure of the search tree. It can be seen that

unnecessary tree expansion has been cut after filtering, and
the width and depth of the Monte Carlo tree are effectively
narrowed.

3.2.4. MCTS-AVS Model. Based on the above modules, the
framework of MCTS-AVS algorithm was improved over
naı̈ve MCTS algorithm (or the direct application of MCTS
algorithm, denoted as n-MCTS) as shown in Figure 5.

+e model works with the following steps.

(1) Start from a current state s(t) � Y(t), V(t){ }, in
which Y(t) is the set of all vehicles’ distance from
the start position, and V(t) is the set of all vehicles’
velocity at time t.

(2) Tree-expansion determination model determines if
it is necessary to launch MCTS algorithm via
equations (8) and (9). If yes, go to step 4, otherwise
go to step 3.

(3) Move CAV one step ahead, and update the states of
CAV andHDV accordingly.+en, go back to step 1.

(4) Determine if the maximum number of iterations
has been reached. If yes, go to step 5, otherwise go to
step 6.

(5) Update the states of CAV and HDV accordingly,
then go back to step 1.

(6) Do Selection: determine the optimal action for CAV
with the UCT function via equation (6). Update the
states of CAV and HDV.

(7) Do Expansion: randomly select a move for CAV to
expand the tree.

(8) Do Simulation: update the states of CAV and HDV,
and rollout termination module determine if it is a
final state via equations (10a)–(10e). If not, go to
step 9. Otherwise, go to step 10.

(9) Select the next randommove, and go back to step 8.
(10) Do Backpropagation: calculate the final benefit of X

and update the node value. +en, go back to step 4.

4. Case Study

In this section, the proposed MCTS-AVS algorithm was
implemented and tested on a typical arterial roadway seg-
ment with signal control. Considering that the minimum
intersection spacing along an arterial corridor was usually
set to be a quarter mile, the test scenario consisted of a 400-
meter roadway with a signal-controlled intersection. Con-
sidering the typical congestion on the urban roadway net-
work and the queuing process at intersection, a free flow
speed of 8.33m/s (i.e., roughly 20mph) was used. After
decomposition, CAV became the leading vehicle with a
platoon of following HDVs.+e platoon had six vehicles that
are evenly distributed near the roadway entrance. +is
scenario was shown in Figure 6, and the specific parameters
were listed in Table 1. +en, in MCTS-AVS algorithm, the
first vehicle in the platoon was assigned as the CAV. +e
objective function was set to be minimization of CPI.
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4.1. Algorithm Result Analysis. For comparison purpose, we
defined two benchmark scenarios. +e first benchmark
scenario had no CAV intelligence, i.e., the CAV drove just
like a typical human-driven vehicle. In other words, this first
benchmark scenario was equivalent to a pure HDV scenario.
+e second benchmark scenario used the MCTF-MTF al-
gorithm that was previously developed by the research team
[34]. +is second benchmark model, however, was devel-
oped with the objective of minimize fuel consumption and

travel time of the mixed traffic flow, which makes the
comparison with this newly proposed model interesting and
demonstrates the safety benefits of this new MCTS-AVS
algorithm.

We used the total CPI value minimization as the ob-
jective function and found the CPI value dropped from
162.63 in the benchmark scenario (without any CAV in-
telligence) to 38.12 with the proposed algorithm. In other
words, the CPI value was reduced by 76.56%. +is benefit
was also greater than the previous MCTS-MTF approach,
which had a CPI value of 43.36. In other words, when
compared with the second benchmark model, a CPI saving
of 12.08% was achieved. +e capabilities of CPI were also
evidenced by the time-space diagram in Figure 7.

In Figure 7, Figure 7(a) represents the benchmark sce-
nario without any CAV intelligence, in which we can see the
vehicles firstly drove at a constant high speed to the in-
tersection, then braked and stopped at the intersection due
to red light, and finally accelerated and passed intersection
when the light turned green. Drastic braking of the lead
vehicle caused a series of deceleration of the following
HDVS, which significantly increased the crash potential of
this traffic flow. On the contrary, a much smoother trajectory
was found in Figure 7(b), as this proposed MCTS-AVS
algorithm avoided sharp deceleration and acceleration and
ensured that CPI value of mixed traffic was kept as low as
possible. Figure 7(c) shows a less smooth curve of the
previously developed MCTS-MTF method. However, the
effect on safety improvement of the previous method was
still lower than MCTS-AVS.

4.2. Algorithm Convergence Analysis. Figure 8 below shows
the changes in the CPI value at different iterations. +e
convergence curve shows that CPI value dropped signifi-
cantly to 38.39 (46.8%) when the number of iterations in-
creased to 25. After that, the results fluctuated with the
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Figure 4: Comparison of tree structure: (a) without rollout termination module and (b) with rollout termination module.
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increase of iterations. It was also observed that, after 50th
iteration, the CPI value actually became very stable, the
degree of fluctuation was less than 1, i.e., within 1/73�1.37%
and can be considered as converged.

4.3. Background Traffic Sensitive Analysis. +e algorithm’s
performance in the reducing CPI value was further tested
with varying level of service (LOS, 1∼ 6 corresponds to
A∼ F), and the results were shown in Figure 9 and Table 2. It

Table 1: Environment variables and hyperparameters.

Variables and hyperparameters Descriptions and values
lseg Roadway length, 400 meters
la Average vehicle length, 5 meters
vs 20 kph
Signal cycle tg � 30s, ty � 5s, tr � 35s, and tc � 70s

C Balance parameter, 0.08
N Iteration times, 50
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Figure 7: Time-space diagram comparison. (a) Benchmark scenario, (b) MCTS-AVS method, and (c) MCTS-MTF method.
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can be found that, for the CPI value, the maximum saving
was observed at LOS B, while near minimum saving was
observed at LOS A, E, and F. +e guess was that when the
traffic was free flowing (e.g., LOS A), not much can be done
to reduce the CPI value. On the contrary, there was also a
greater risk of collision during a free-flowing traffic (e.g.,
LOS B) decelerating process due to the change of signal light.
Whereas when traffic was congested (i.e., LOS E and F), the
percentage of saving was reduced significantly considering
slowly moving and a low risk of collision between vehicles.

5. Conclusion and Future Research

+ismanuscript presents a reinforcement learning modeling
approach, named Monte Carlo tree search-based autono-
mous vehicle safety algorithm, or MCTS-AVS, to optimize
the safety of mixed traffic flow, on a one-lane roadway with
signalized intersection control. Crash potential index is
defined to quantitively measure the safety performance of
the traffic flow. +e CAV trajectory planning problem is
formulated as an optimization model, and the solution
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Figure 9: Algorithm performance in different LOS. (a) absolute values and (b) saving percentages.

Table 2: Algorithm performance comparison in different LOS.

LOS Benchmark1 (no intelligence) Proposed model: MCTS-AVS Benchmark2: (MCTS-MTF
A 56.24 49.526 (11.94%) 52.26 (7.08%)
B 189.54 35.22 (81.42%) 47.41 (74.99%)
C 162.63 38.12 (76.56%) 43.36 (73.34%)
D 108.42 47.06 (56.59%) 51.96 (52.08%)
E 56.4 49.76 (11.77%) 53.41 (5.30%)
F 60.12 45.91 (23.64%) 46.5 (22.65%)
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procedure is proposed. +e tree-expansion determination
module and rollout termination module are developed to
identify and reduce the unnecessary tree expansion, so as to
train the model more efficiently towards the desired di-
rection. +e case study results found that the proposed
algorithm was able to reduce the CPI by 76.56%, when
compared with a benchmarkmodel without any intelligence,
and 12.08% when compared with another benchmark model
which the team developed earlier. +ese results demon-
strated the satisfactory performance of the proposed algo-
rithm in enhancing the safety of the traffic flow.

In order to expand the research scenario from one-lane
traffic to a general roadway with multiple lanes, future re-
search may be focused on the following topics. First, how to
decompose this mixed traffic to satisfy the proposed algo-
rithm or become a cornerstone of algorithm improvement is
a topic worth investigation. Furthermore, with the increase
of the number of lanes, there is not only car-following
behavior but also lane-changing movements with greater
randomness of this scenario. From the algorithm itself, how
to improve the simulation efficiency and identify the un-
necessary tree expansion node under the complex condi-
tions can also be investigated.
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