219 research outputs found

    First Detection of \u3ci\u3eColletotrichum fructicola\u3c/i\u3e (Ascomycota) on Horsehair Worms (Nematomorpha)

    Get PDF
    Fungal members of Colletotrichum (Ascomycota) were found to be associated with Chordodes formosanus, one of the three currently known horsehair worm (Nematomorpha) species in Taiwan. The fungi were identified as Colletotrichum fructicola, which is mostly known as a plant pathogen, through the use of the nuclear ribosomal internal transcribed spacer and partial large subunit (nrITS + nrLSU) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) DNA sequences. To our knowledge, this report represents both the first records for Colletotrichum associated with hairworms and for fungi on Nematomorpha. These findings expand the knowledge on the ecological relationships of both clades

    Preliminary Survey of Mycotoxins Identified from Florida Bahiagrass Pastures

    Get PDF
    The beef cattle ranchers in Florida reported some health issues related to cattle grazing on warm-season grass pastures, such as bahiagrass and bermudagrass. The illness was not attributable to nutritional imbalances, or other possible causes. The focus then turned to what the animals were consuming, and forages were implicated. In general, the forages in Florida are just fine; however, sometimes under certain circumstances the fungi live in our forages may produce “secondary metabolites”. All forages harbor fungi. Some fungi are good in that they aid our forages to grow better, helping to mine nutrients from the soil or atmosphere. Sometimes they are not so good, like when high levels of ergotized seed occur in the seed heads of bahiagrass.Fil: Liao, Hui Ling. University of Florida; Estados UnidosFil: Chen, Ko Hsuan. University of Florida; Estados UnidosFil: MarcĂłn, Florencia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste. Instituto de BotĂĄnica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de BotĂĄnica del Nordeste; ArgentinaFil: Jones, Robert. University of Florida; Estados UnidosFil: Justesen, Brittany. University of Florida; Estados UnidosFil: Walter, Joseph. University of Florida; Estados UnidosFil: Blount, Ann. University of Florida; Estados UnidosFil: Mackowiak, Chery L.. University of Florida; Estados UnidosFil: Mayo, Doug. University of Florida; Estados UnidosFil: Wallau, Marcelo. University of Florida; Estados Unido

    Performance of Six Clinical Physiological Scoring Systems in Predicting In-Hospital Mortality in Elderly and Very Elderly Patients with Acute Upper Gastrointestinal Bleeding in Emergency Department

    Get PDF
    Background and Objectives: The aim of this study is to compare the performance of six clinical physiological-based scores, including the pre-endoscopy Rockall score, shock index (SI), age shock index (age SI), Rapid Acute Physiology Score (RAPS), Rapid Emergency Medicine Score (REMS), and Modified Early Warning Score (MEWS), in predicting in-hospital mortality in elderly and very elderly patients in the emergency department (ED) with acute upper gastrointestinal bleeding (AUGIB). Materials and Methods: Patients older than 65 years who visited the ED with a clinical diagnosis of AUGIB were enrolled prospectively from July 2016 to July 2021. The six scores were calculated and compared with in-hospital mortality. Results: A total of 336 patients were recruited, of whom 40 died. There is a significant difference between the patients in the mortality group and survival group in terms of the six scoring systems. MEWS had the highest area under the curve (AUC) value (0.82). A subgroup analysis was performed for a total of 180 very elderly patients (i.e., older than 75 years), of whom 27 died. MEWS also had the best predictive performance in this subgroup (AUC, 0.82). Conclusions: This simple, rapid, and obtainable-by-the-bed parameter could assist emergency physicians in risk stratification and decision making for this vulnerable group

    Pediatric Thalassemic Patients Have Higher Incidence of Asthma: A Nationwide Population-Based Retrospective Cohort Study

    Get PDF
    INTRODUCTION: Patients with hemoglobinopathies have been reported to have higher rates of pulmonary complications. Few studies have investigated the association between thalassemia and asthma in children. METHODS: We used the data of one million individuals randomly selected from the Registry for Beneficiaries of the National Health Insurance Research Database. One thalassemic child was matched with four control children without thalassemia according to sex, birth year, birth season, prematurity, and previous enteroviral infection. RESULTS: A total of 800 hundred thalassemic children and 3200 controls were included. Children with thalassemia had higher rates of developing asthma (41.81 vs 25.70 per 1000 person-years, P \u3c 0.001) than the non-thalassemia controls with an adjusted hazard ratio of 1.37 (95% confidence interval [CI] = 1.19-1.58). Boys in the thalassemia cohort had a significantly higher adjusted incidence hazard ratio (IRR) of asthma than those in the non-thalassemia cohort (adjusted IRR = 1.45, 95% CI = 1.02-1.73). The risk of atopic and nonatopic asthma was higher in the thalassemia cohort than in the non-thalassemia cohort (IRR = 1.3, 1.61, respectively). CONCLUSIONS: Children with thalassemia were more likely to develop asthma. More attention should be paid to the early diagnosis of asthma and prevention of asthma attacks

    Ectomycorrhizal Plant-Fungal Co-invasions as Natural Experiments for Connecting Plant and Fungal Traits to Their Ecosystem Consequences

    Get PDF
    Introductions and invasions by fungi, especially pathogens and mycorrhizal fungi, are widespread and potentially highly consequential for native ecosystems, but may also offer opportunities for linking microbial traits to their ecosystem functions. In particular, treating ectomycorrhizal (EM) invasions, i.e., co-invasions by EM fungi and their EM host plants, as natural experiments may offer a powerful approach for testing how microbial traits influence ecosystem functions. Forests dominated by EM symbiosis have unique biogeochemistry whereby the secretions of EM plants and fungi affect carbon (C) and nutrient cycling; moreover, particular lineages of EM fungi have unique functional traits. EM invasions may therefore alter the biogeochemistry of the native ecosystems they invade, especially nitrogen (N) and C cycling. By identifying “response traits” that favor the success of fungi in introductions and invasions (e.g., spore dispersal and germination) and their correlations with “effect traits” (e.g., nutrient-cycling enzymes) that can alter N and C cycling (and affect other coupled elemental cycles), one may be able to predict the functional consequences for ecosystems of fungal invasions using biogeochemistry models that incorporate fungal traits. Here, we review what is already known about how EM fungal community composition, traits, and ecosystem functions differ between native and exotic populations, focusing on the example of EM fungi associated with species of Pinus introduced from the Northern into the Southern Hemisphere. We develop hypotheses on how effects of introduced and invasive EM fungi may depend on interactions between soil N availability in the exotic range and EM fungal traits. We discuss how such hypotheses could be tested by utilizing Pinus introductions and invasions as a model system, especially when combined with controlled laboratory experiments. Finally, we illustrate how ecosystem modeling can be used to link fungal traits to their consequences for ecosystem N and C cycling in the context of biological invasions, and we highlight exciting avenues for future directions in understanding EM invasion.Fil: Hoeksema, Jason D.. University of Mississippi; Estados UnidosFil: Averill, Colin. No especifĂ­ca;Fil: Bhatnagar, Jennifer M.. Boston University; Estados UnidosFil: Brzostek, Edward. West Virginia University; Estados UnidosFil: Buscardo, Erika. Universidade do BrasĂ­lia; BrasilFil: Chen, Ko Hsuan. University of Florida; Estados UnidosFil: Liao, Hui Ling. University of Florida; Estados UnidosFil: Nagy, Laszlo. Universidade Estadual de Campinas; BrasilFil: Policelli, Nahuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Ridgeway, Joanna. West Virginia University; Estados UnidosFil: Rojas, J. Alejandro. University of Arkansas for Medical Sciences; Estados UnidosFil: Vilgalys, Rytas. University of Duke; Estados Unido

    Soil bacterial and fungal communities of six bahiagrass cultivars

    Get PDF
    Background Cultivars of bahiagrass (Paspalum notatum FlĂŒggĂ©) are widely used for pasture in the Southeastern USA. Soil microbial communities are unexplored in bahiagrass and they may be cultivar-dependent, as previously proven for other grass species. Understanding the influence of cultivar selection on soil microbial communities is crucial as microbiome taxa have repeatedly been shown to be directly linked to plant performance. Objectives This study aimed to determine whether different bahiagrass cultivars interactively influence soil bacterial and fungal communities. Methods Six bahiagrass cultivars (‘Argentine’, ‘Pensacola’, ‘Sand Mountain’, ‘Tifton 9’, ‘TifQuik’, and ‘UF-Riata’) were grown in a randomized complete block design with four replicate plots of 4.6 × 1.8 m per cultivar in a Rhodic Kandiudults soil in Northwest Florida, USA. Three soil subsamples per replicate plot were randomly collected. Soil DNA was extracted and bacterial 16S ribosomal RNA and fungal ribosomal internal transcribed spacer 1 genes were amplified and sequenced with one Illumina Miseq Nano. Results The soil bacterial and fungal community across bahiagrass cultivars showed similarities with communities recovered from other grassland ecosystems. Few differences in community composition and diversity of soil bacteria among cultivars were detected; none were detected for soil fungi. The relative abundance of sequences assigned to nitrite-oxidizing Nitrospira was greater under ‘Sand Mountain’ than ‘UF-Riata’. Indicator species analysis revealed that several bacterial and fungal indicators associated with either a single cultivar or a combination of cultivars are likely to be plant pathogens or antagonists. Conclusions Our results suggest a low impact of plant cultivar choice on the soil bacterial community composition, whereas the soil fungal community was unaffected. Shifts in the relative abundance of Nitrospira members in response to cultivar choice may have implications for soil N dynamics. The cultivars associated with presumptive plant pathogens or antagonists indicates that the ability of bahiagrass to control plant pathogens may be cultivar-dependent, however, physiological studies on plant-microbe interactions are required to confirm this presumption. We therefore suggest that future studies should explore the potential of different bahiagrass cultivars on plant pathogen control, particularly in sod-based crop rotation

    Fungal-Bacterial Networks in the Populus Rhizobiome Are Impacted by Soil Properties and Host Genotype

    Get PDF
    Plant root-associated microbial symbionts comprise the plant rhizobiome. These microbes function in provisioning nutrients and water to their hosts, impacting plant health and disease. The plant microbiome is shaped by plant species, plant genotype, soil and environmental conditions, but the contributions of these variables are hard to disentangle from each other in natural systems. We used bioassay common garden experiments to decouple plant genotype and soil property impacts on fungal and bacterial community structure in the Populus rhizobiome. High throughput amplification and sequencing of 16S, ITS, 28S and 18S rDNA was accomplished through 454 pyrosequencing. Co-association patterns of fungal and bacterial taxa were assessed with 16S and ITS datasets. Community bipartite fungal-bacterial networks and PERMANOVA results attribute significant difference in fungal or bacterial communities to soil origin, soil chemical properties and plant genotype. Indicator species analysis identified a common set of root bacteria as well as endophytic and ectomycorrhizal fungi associated with Populus in different soils. However, no single taxon, or consortium of microbes, was indicative of a particular Populus genotype. Fungal-bacterial networks were over-represented in arbuscular mycorrhizal, endophytic, and ectomycorrhizal fungi, as well as bacteria belonging to the orders Rhizobiales, Chitinophagales, Cytophagales, and Burkholderiales. These results demonstrate the importance of soil and plant genotype on fungal-bacterial networks in the belowground plant microbiome

    TCMGeneDIT: a database for associated traditional Chinese medicine, gene and disease information using text mining

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditional Chinese Medicine (TCM), a complementary and alternative medical system in Western countries, has been used to treat various diseases over thousands of years in East Asian countries. In recent years, many herbal medicines were found to exhibit a variety of effects through regulating a wide range of gene expressions or protein activities. As available TCM data continue to accumulate rapidly, an urgent need for exploring these resources systematically is imperative, so as to effectively utilize the large volume of literature.</p> <p>Methods</p> <p>TCM, gene, disease, biological pathway and protein-protein interaction information were collected from public databases. For association discovery, the TCM names, gene names, disease names, TCM ingredients and effects were used to annotate the literature corpus obtained from PubMed. The concept to mine entity associations was based on hypothesis testing and collocation analysis. The annotated corpus was processed with natural language processing tools and rule-based approaches were applied to the sentences for extracting the relations between TCM effecters and effects.</p> <p>Results</p> <p>We developed a database, TCMGeneDIT, to provide association information about TCMs, genes, diseases, TCM effects and TCM ingredients mined from vast amount of biomedical literature. Integrated protein-protein interaction and biological pathways information are also available for exploring the regulations of genes associated with TCM curative effects. In addition, the transitive relationships among genes, TCMs and diseases could be inferred through the shared intermediates. Furthermore, TCMGeneDIT is useful in understanding the possible therapeutic mechanisms of TCMs via gene regulations and deducing synergistic or antagonistic contributions of the prescription components to the overall therapeutic effects. The database is now available at <url>http://tcm.lifescience.ntu.edu.tw/</url>.</p> <p>Conclusion</p> <p>TCMGeneDIT is a unique database that offers diverse association information on TCMs. This database integrates TCMs with biomedical studies that would facilitate clinical research and elucidate the possible therapeutic mechanisms of TCMs and gene regulations.</p
    • 

    corecore