28 research outputs found
Post-activation Performance Enhancement after a Bout of Accentuated Eccentric Loading in Collegiate Male Volleyball Players
The purpose of this study was to investigate the benefit of post-activation performance enhancement (PAPE) after accentuated eccentric loading (AEL) compared to traditional resistance loading (TR). Sixteen male volleyball athletes were divided in AEL and TR group. AEL group performed 3 sets of 4 repetitions (eccentric: 105% of concentric 1RM, concentric: 80% of concentric 1RM) of half squat, and TR group performed 3 sets of 5 repetitions (eccentric & concentric: 85% of 1RM). Countermovement jump (CMJ), spike jump (SPJ), isometric mid-thigh pull (IMTP), and muscle soreness test were administered before (Pre) exercise, and 10 min (10-min), 24 h (24-h), and 48 h (48-h) after exercise. A two-way repeated measures analysis of variance was used to analyze the data. Peak force and rate of development (RFD) of IMTP in AEL group were significantly greater (p 0.05) groups x time. AEL seemed capable to maintain force production in IMTP, but not in CMJ and SPJ. It is recommended the use of accentuated eccentric loading protocols to overcome the fatigue
Phenome-wide analysis of Taiwan Biobank reveals novel glycemia-related loci and genetic risks for diabetes
To explore the complex genetic architecture of common diseases and traits, we conducted comprehensive PheWAS of ten diseases and 34 quantitative traits in the community-based Taiwan Biobank (TWB). We identified 995 significantly associated loci with 135 novel loci specific to Taiwanese population. Further analyses highlighted the genetic pleiotropy of loci related to complex disease and associated quantitative traits. Extensive analysis on glycaemic phenotypes (T2D, fasting glucose and Hb
Carijoside A, a Bioactive Sterol Glycoside from an Octocoral Carijoa sp. (Clavulariidae)
A new bioactive sterol glycoside, 3β-O-(3′,4′-di-O-acetyl-β-d-arabinopyranosyl) -25ξ-cholestane-3β,5α,6β,26-tetrol-26-acetate) (carijoside A, 1), was isolated from an octocoral identified as Carijoa sp. The structure of glycoside 1 was established by spectroscopic methods and by comparison with spectral data for the other known glycosides. Carijoside A (1) displayed significant inhibitory effects on superoxide anion generation and elastase release by human neutrophils and this compound exhibited moderate cytotoxicity toward DLD-1, P388D1, HL-60, and CCRF-CEM tumor cells
Excavatoids O and P, New 12-Hydroxybriaranes from the Octocoral Briareum excavatum
Two new 12-hydroxybriarane diterpenoids, designated as excavatoids O (1) and P (2), were isolated from the octocoral Briareum excavatum. The structures of briaranes 1 and 2 were established on the basis of extensive spectral data analysis. Excavatoid P (2) is the first metabolite which possesses a 6β -chlorine atom in briarane analogues
Excavatoids E and F: Discovery of Two New Briaranes from the Cultured Octocoral Briareum excavatum
Two new briarane-related diterpenoids, designated as excavatoids E (1) and F (2), were isolated from the cultured octocoral Briareum excavatum. The structures of compounds 1 and 2 were established on the basis of extensive spectral data analysis. Briaranes 1 and 2 were found to exhibit moderate inhibitory effects on elastase release by human neutrophils
Assessing Age-Related Gray Matter Differences in Young Adults with Voxel-Based Morphometry: The Effect of Field Strengths
Knowing the patterns of brain differences with age in the young population could lead to a better understanding of the causes of certain psychiatric disorders; however, relevant information is insufficient. Here, a pattern of regional gray matter (GM) that changed with age in a young cohort aged 20–30 years was provided. Extending from previous age studies, all participants were imaged at both 1.5 T and 3 T to address the question of how far the field strength influences results. Fifty-nine young participants aged 20–30 years were scanned at both 1.5 T and 3 T. Voxel-based morphometry (VBM) was used to estimate the GM volume. Some brain regions showed a significant field strength-dependent difference in GM volume. VBM uncovered a significantly age-related increase in the GM volume in the left visual-associated area at 3 T, which was not detected at 1.5 T. In addition, voxels at 1.5 T that revealed a significant age-related reduction in the GM volume were found in the right cerebellum. In conclusion, age-related differences in human brain morphology could even be detected in a young cohort aged 20–30 years; however, the results varied across field strengths. Thus, field strength should be considered an important factor when comparing age-specific brain differences across studies
COVID-19 Surveiller: toward a robust and effective pandemic surveillance system based on social media mining
The outbreak of the novel coronavirus, COVID-19, has become one of the most severe pandemics in human history. In this paper, we propose to leverage social media users as social sensors to simultaneously predict the pandemic trends and suggest potential risk factors for public health experts to understand spread situations and recommend proper interventions. More precisely, we develop novel deep learning models to recognize important entities and their relations over time, thereby establishing dynamic heterogeneous graphs to describe the observations of social media users. A dynamic graph neural network model can then forecast the trends (e.g. newly diagnosed cases and death rates) and identify high-risk events from social media. Based on the proposed computational method, we also develop a web-based system for domain experts without any computer science background to easily interact with. We conduct extensive experiments on large-scale datasets of COVID-19 related tweets provided by Twitter, which show that our method can precisely predict the new cases and death rates. We also demonstrate the robustness of our web-based pandemic surveillance system and its ability to retrieve essential knowledge and derive accurate predictions across a variety of circumstances. Our system is also available at http://scaiweb.cs.ucla.edu/covidsurveiller/. This article is part of the theme issue 'Data science approachs to infectious disease surveillance'
Excavatolide B Modulates the Electrophysiological Characteristics and Calcium Homeostasis of Atrial Myocytes
Severe bacterial infections caused by sepsis always result in profound physiological changes, including fever, hypotension, arrhythmia, necrosis of tissue, systemic multi-organ dysfunction, and finally death. The lipopolysaccharide (LPS) provokes an inflammatory response under sepsis, which may increase propensity to arrhythmogenesis. Excavatolide B (EXCB) possesses potent anti-inflammatory effects. However, it is not clear whether EXCB could modulate the electrophysiological characteristics and calcium homeostasis of atrial myocytes. This study investigated the effects of EXCB on the atrial myocytes exposed to lipopolysaccharide. A whole-cell patch clamp and indo-1 fluorimetric ratio technique was employed to record the action potential (AP), ionic currents, and intracellular calcium ([Ca2+]i) in single, isolated rabbit left atrial (LA) cardiomyocytes, with and without LPS (1 μg/mL) and LPS + EXCB administration (10 μM) for 6 ± 1 h, in order to investigate the role of EXCB on atrial electrophysiology. In the presence of LPS, EXCB-treated LA myocytes (n = 13) had a longer AP duration at 20% (29 ± 2 vs. 20 ± 2 ms, p < 0.05), 50% (52 ± 4 vs. 40 ± 3 ms, p < 0.05), and 90% (85 ± 5 vs. 68 ± 3 ms, p < 0.05), compared to the LPS-treated cells (n = 12). LPS-treated LA myocytes showed a higher late sodium current, Na+/Ca2+ exchanger current, transient outward current, and delayed rectifier potassium current, but a lower l-type Ca2+ current, than the control LA myocytes. Treatment with EXCB reversed the LPS-induced alterations of the ionic currents. LPS-treated, EXCB-treated, and control LA myocytes exhibited similar Na+ currents. In addition, the LPS-treated LA myocytes exhibited a lower [Ca2+]i content and higher sarcoplasmic reticulum calcium content, than the controls. EXCB reversed the LPS-induced calcium alterations. In conclusion, EXCB modulates LPS-induced LA electrophysiological characteristics and calcium homeostasis, which may contribute to attenuating LPS-induced arrhythmogenesis
Excavatolide B Modulates the Electrophysiological Characteristics and Calcium Homeostasis of Atrial Myocytes
Severe bacterial infections caused by sepsis always result in profound physiological changes, including fever, hypotension, arrhythmia, necrosis of tissue, systemic multi-organ dysfunction, and finally death. The lipopolysaccharide (LPS) provokes an inflammatory response under sepsis, which may increase propensity to arrhythmogenesis. Excavatolide B (EXCB) possesses potent anti-inflammatory effects. However, it is not clear whether EXCB could modulate the electrophysiological characteristics and calcium homeostasis of atrial myocytes. This study investigated the effects of EXCB on the atrial myocytes exposed to lipopolysaccharide. A whole-cell patch clamp and indo-1 fluorimetric ratio technique was employed to record the action potential (AP), ionic currents, and intracellular calcium ([Ca2+]i) in single, isolated rabbit left atrial (LA) cardiomyocytes, with and without LPS (1 μg/mL) and LPS + EXCB administration (10 μM) for 6 ± 1 h, in order to investigate the role of EXCB on atrial electrophysiology. In the presence of LPS, EXCB-treated LA myocytes (n = 13) had a longer AP duration at 20% (29 ± 2 vs. 20 ± 2 ms, p < 0.05), 50% (52 ± 4 vs. 40 ± 3 ms, p < 0.05), and 90% (85 ± 5 vs. 68 ± 3 ms, p < 0.05), compared to the LPS-treated cells (n = 12). LPS-treated LA myocytes showed a higher late sodium current, Na+/Ca2+ exchanger current, transient outward current, and delayed rectifier potassium current, but a lower l-type Ca2+ current, than the control LA myocytes. Treatment with EXCB reversed the LPS-induced alterations of the ionic currents. LPS-treated, EXCB-treated, and control LA myocytes exhibited similar Na+ currents. In addition, the LPS-treated LA myocytes exhibited a lower [Ca2+]i content and higher sarcoplasmic reticulum calcium content, than the controls. EXCB reversed the LPS-induced calcium alterations. In conclusion, EXCB modulates LPS-induced LA electrophysiological characteristics and calcium homeostasis, which may contribute to attenuating LPS-induced arrhythmogenesis
Dysregulation of Immune Cell Subpopulations in Atypical Hemolytic Uremic Syndrome
Atypical hemolytic uremic syndrome (aHUS) is a rare, life-threatening thrombotic microangiopathy. Definitive biomarkers for disease diagnosis and activity remain elusive, making the exploration of molecular markers paramount. We conducted single-cell sequencing on peripheral blood mononuclear cells from 13 aHUS patients, 3 unaffected family members of aHUS patients, and 4 healthy controls. We identified 32 distinct subpopulations encompassing 5 B-cell types, 16 T- and natural killer (NK) cell types, 7 monocyte types, and 4 other cell types. Notably, we observed a significant increase in intermediate monocytes in unstable aHUS patients. Subclustering analysis revealed seven elevated expression genes, including NEAT1, MT-ATP6, MT-CYB, VIM, ACTG1, RPL13, and KLRB1, in unstable aHUS patients, and four heightened expression genes, including RPS27, RPS4X, RPL23, and GZMH genes, in stable aHUS patients. Additionally, an increase in the expression of mitochondria-related genes suggested a potential influence of cell metabolism on the clinical progression of the disease. Pseudotime trajectory analysis revealed a unique immune cell differentiation pattern, while cell—cell interaction profiling highlighted distinctive signaling pathways among patients, family members, and controls. This single-cell sequencing study is the first to confirm immune cell dysregulation in aHUS pathogenesis, offering valuable insights into molecular mechanisms and potential new diagnostic and disease activity markers