156 research outputs found

    Optimal iron content in ready-to-use therapeutic foods for the treatment of severe acute malnutrition in the community settings: A protocol for the systematic review and meta-analysis

    Get PDF
    Introduction: The current standard of care for children with severe acute malnutrition (SAM) involves using ready-to-use therapeutic food (RUTF) to promote growth; however, the precise formulation to achieve optimal recovery remains unclear. Emerging research suggests that alternative RUTF formulations may be more effective in correcting SAM-related complications such as anaemia and iron deficiency. This systematic review commissioned by the WHO aims to synthesise the most recent research on the iron content in RUTF and related products in the community-based treatment of uncomplicated severe malnutrition in children aged 6 months and older. Methods and analysis: We will search multiple electronic databases. We will include randomised controlled trials and non-randomised studies with a control arm. The intervention group will be infants who received RUTF treatments other than the current recommended guidelines set forth by the WHO. The comparison group is children receiving RUTF containing iron at the current WHO-recommended level of 1.9 mg/100 kcal (10-14 mg/100 g). The primary outcomes of interest include blood haemoglobin concentration, any anaemia, severe anaemia, iron-deficiency anaemia, recovery from SAM and any adverse outcomes. We will use meta-analysis to pool findings if sufficient homogeneity exists among included studies. The risk of bias in studies will be evaluated using the Cochrane risk of bias-2. We will use the Grading of Recommendations Assessment, Development, and Evaluation(GRADE) approach to examine the overall certainty of evidence. Ethics and dissemination: This is a systematic review and will not involve direct contact with human subjects. The findings of this review will be published in a peer-reviewed journal and will guide the WHO\u27s recommendation on the optimal iron content in RUTFs for the treatment of SAM in children aged 6-59 month

    An \u3cem\u3eIL1RL1\u3c/em\u3e genetic variant lowers soluble ST2 levels and the risk effects of \u3cem\u3eAPOE\u3c/em\u3e-ε4 in female patients with Alzheimer’s disease

    Get PDF
    Changes in the levels of circulating proteins are associated with Alzheimer’s disease (AD), whereas their pathogenic roles in AD are unclear. Here, we identified soluble ST2 (sST2), a decoy receptor of interleukin-33–ST2 signaling, as a new disease-causing factor in AD. Increased circulating sST2 level is associated with more severe pathological changes in female individuals with AD. Genome-wide association analysis and CRISPR–Cas9 genome editing identified rs1921622, a genetic variant in an enhancer element of IL1RL1, which downregulates gene and protein levels of sST2. Mendelian randomization analysis using genetic variants, including rs1921622, demonstrated that decreased sST2 levels lower AD risk and related endophenotypes in females carrying the Apolipoprotein E (APOE)-ε4 genotype; the association is stronger in Chinese than in European-descent populations. Human and mouse transcriptome and immunohistochemical studies showed that rs1921622/sST2 regulates amyloid-beta (Aβ) pathology through the modulation of microglial activation and Aβ clearance. These findings demonstrate how sST2 level is modulated by a genetic variation and plays a disease-causing role in females with AD

    Non-coding variability at the APOE locus contributes to the Alzheimer’s risk

    Get PDF
    Alzheimer’s disease (AD) is a leading cause of mortality in the elderly. While the coding change of APOE-ε4 is a key risk factor for late-onset AD and has been believed to be the only risk factor in the APOE locus, it does not fully explain the risk effect conferred by the locus. Here, we report the identification of AD causal variants in PVRL2 and APOC1 regions in proximity to APOE and define common risk haplotypes independent of APOE-ε4 coding change. These risk haplotypes are associated with changes of AD-related endophenotypes including cognitive performance, and altered expression of APOE and its nearby genes in the human brain and blood. High-throughput genome-wide chromosome conformation capture analysis further supports the roles of these risk haplotypes in modulating chromatin states and gene expression in the brain. Our findings provide compelling evidence for additional risk factors in the APOE locus that contribute to AD pathogenesis

    Tamoxifen and raloxifene modulate gap junction coupling during early phases of retinoic acid-dependent neuronal differentiation of NTera2/D1 cells

    Get PDF
    Gap junctions (GJ) represent a cellular communication system known to influence neuronal differentiation and survival. To assess a putative role of this system for neural effects of tamoxifen (TAM) and raloxifene (RAL), we used the human teratocarcinoma cell line NTera2/D1, retinoic acid (RA)-dependent neuronal differentiation of which is regulated by gap junctions formed of connexin43 (Cx43). As demonstrated by Western blot analysis, concentrations above 1 µmol/l for TAM, and 0.1 µmol/l for RAL lead to a temporary time- and concentration-dependent increase in Cx43 immunoreactivity, which reached a peak for TAM after 1 day and for RAL after 2 days. Immunocytochemical stainings revealed the increase in Cx43 immunoreactivity to result from an accumulation in intracellular compartments such as the Golgi apparatus or lysosomes. In addition, TAM and RAL were able to prevent the RA-dependent decrease of Cx43 immunoreactivity in NTera2/D1 cells, normally observed during neuronal differentiation. This suggested a suppression of neuronal differentiation to result from these substances. According to this, treatment of NTera2/D1 cells with 10 µmol/l TAM or RAL during weeks 1 and 2 of a 6 weeks RA-driven differentiation schedule impaired, whereas treatment during weeks 5 and 6 did not impair, neuronal differentiation of these cells. Modulation of GJ coupling between NTera2/D1 cells by TAM and RAL seems therefore to perturb early neuronal differentiation, whereas differentiated neurons in the mature brain seem to be not affected. These effects could be of importance for actions of TAM and RAL on early embryonic steps of nervous system formation

    Preclinical data do not support the use of amiodarone or dronedarone as antiparasitic drugs for Chagas disease at the approved human dosing regimen

    Get PDF
    The repurposing of approved drugs is an appealing method to fast-track the development of novel therapies for neglected diseases. Amiodarone and dronedarone, two approved antiarrhythmic agents, have been reported to have potential for the management of Chagas disease patients displaying symptomatic heart pathology. More recently, it has been suggested that both molecules not only have an antiarrhythmic effect, but also have trypanocidal activity against Trypanosoma cruzi, the causative agent of Chagas disease. In this work, we assessed the in vitro activity of these compounds against T. cruzi, the in vivo pharmacokinetics, and pharmacodynamics, to determine the potential for repurposing these drugs as therapies for Chagas disease. Based on these results, we were unable to reproduce the in vitro potencies of amiodarone and dronedarone described in the literature, and both drugs were found to be inactive or cytotoxic against a variety of different mammalian cell lines. The evaluation of in vivo efficacy in a bioluminescent murine model of T. cruzi did not show antiparasitic activity at the highest tolerated dose tested. While the potential of amiodarone and dronedarone as antiarrhythmic agents in Chagas cardiomyopathic patients cannot be completely excluded, a trypanocidal effect in patients treated with these two drugs appears unlikely

    Normalisation to Blood Activity Is Required for the Accurate Quantification of Na/I Symporter Ectopic Expression by SPECT/CT in Individual Subjects

    Get PDF
    The utilisation of the Na/I symporter (NIS) and associated radiotracers as a reporter system for imaging gene expression is now reaching the clinical setting in cancer gene therapy applications. However, a formal assessment of the methodology in terms of normalisation of the data still remains to be performed, particularly in the context of the assessment of activities in individual subjects in longitudinal studies. In this context, we administered to mice a recombinant, replication-incompetent adenovirus encoding rat NIS, or a human colorectal carcinoma cell line (HT29) encoding mouse NIS. We used 99mTc pertechnetate as a radiotracer for SPECT/CT imaging to determine the pattern of ectopic NIS expression in longitudinal kinetic studies. Some animals of the cohort were culled and NIS expression was measured by quantitative RT-PCR and immunohistochemistry. The radioactive content of some liver biopsies was also measured ex vivo. Our results show that in longitudinal studies involving datasets taken from individual mice, the presentation of non-normalised data (activity expressed as %ID/g or %ID/cc) leads to ‘noisy’, and sometimes incoherent, results. This variability is due to the fact that the blood pertechnetate concentration can vary up to three-fold from day to day. Normalisation of these data with blood activities corrects for these inconsistencies. We advocate that, blood pertechnetate activity should be determined and used to normalise the activity measured in the organ/region of interest that expresses NIS ectopically. Considering that NIS imaging has already reached the clinical setting in the context of cancer gene therapy, this normalisation may be essential in order to obtain accurate and predictive information in future longitudinal clinical studies in biotherapy
    • …
    corecore