3,175 research outputs found

    Antiferromagnetism and chiral d-wave superconductivity from an effective tJDt-J-D model for twisted bilayer graphene

    Get PDF
    Starting from the strong-coupling limit of an extended Hubbard model, we develop a spin-fermion theory to study the insulating phase and pairing symmetry of the superconducting phase in twisted bilayer graphene. Assuming that the insulating phase is an anti-ferromagnetic insulator, we show that fluctuations of the anti-ferromagnetic order in the conducting phase can mediate superconducting pairing. Using a self-consistent mean-field analysis, we find that the pairing wave function has a chiral d-wave symmetry. Consistent with this observation, we show explicitly the existence of chiral Majorana edge modes by diagonalizing our proposed Hamiltonian on a finite-sized system. These results establish twisted bilayer graphene as a promising platform to realize topological superconductivity

    Discovery and genotyping of structural variation from long-read haploid genome sequence data

    Get PDF
    In an effort to more fully understand the full spectrum of human genetic variation, we generated deep single-molecule, real-time (SMRT) sequencing data from two haploid human genomes. By using an assembly-based approach (SMRT-SV), we systematically assessed each genome independently for structural variants (SVs) and indels resolving the sequence structure of 461,553 genetic variants from 2 bp to 28 kbp in length. We find that &gt;89% of these variants have been missed as part of analysis of the 1000 Genomes Project even after adjusting for more common variants (MAF &gt; 1%). We estimate that this theoretical human diploid differs by as much as ∼16 Mbp with respect to the human reference, with long-read sequencing data providing a fivefold increase in sensitivity for genetic variants ranging in size from 7 bp to 1 kbp compared with short-read sequence data. Although a large fraction of genetic variants were not detected by short-read approaches, once the alternate allele is sequence-resolved, we show that 61% of SVs can be genotyped in short-read sequence data sets with high accuracy. Uncoupling discovery from genotyping thus allows for the majority of this missed common variation to be genotyped in the human population. Interestingly, when we repeat SV detection on a pseudodiploid genome constructed in silico by merging the two haploids, we find that ∼59% of the heterozygous SVs are no longer detected by SMRT-SV. These results indicate that haploid resolution of long-read sequencing data will significantly increase sensitivity of SV detection.</jats:p

    Endometrial Tumor Classification by Histomorphology and Biomarkers in the Nurses’ Health Study

    Get PDF
    Objective: Endometrial cancers have historically been classified by histomorphologic appearance, which is subject to interobserver disagreement. As molecular and biomarker testing has become increasingly available, the prognostic significance and accuracy of histomorphologic diagnoses have been questioned. To address these issues for a large, prospective cohort study, we provide the results of a centralized pathology review and biomarker analysis of all incidental endometrial carcinomas occurring between 1976 and 2012 in the Nurses' Health Study. Methods: Routine histology of all (n = 360) cases was reviewed for histomorphologic diagnosis. Cases were subsequently planted in a tissue microarray to explore expression of a variety of biomarkers (e.g., ER, PR, p53, PTEN, PAX2, AMACR, HNF1β, Napsin A, p16, PAX8, and GATA3). Results: Histologic subtypes included endometrioid (87.2%), serous (5.6%), carcinosarcoma (3.9%), clear cell (1.7%), and mixed type (1.7%). Biomarker results within histologic subtypes were consistent with existing literature: abnormal p53 was frequent in serous cases (74%), and HNF1β (67%), Napsin A (67%), and AMACR (83%) expression was frequent in clear cell carcinomas. Our dataset also allowed for examination of biomarker expression across non-preselected histologies. The results demonstrated that (1) HNF1β was not specific for clear cell carcinoma, (2) TP53 mutations occurred across many histologies, and (3) GATA3 was expressed across multiple histotypes, with 75% of positive cases demonstrating high-grade features. Conclusions: Our findings establish the subtypes of endometrial cancer occurring in the Nurses' Health Study, corroborate the sensitivity of certain well-established biomarkers, and call into question previously identified associations between certain biomarkers (e.g., HNF1B) and particular histotypes

    Prevotella copri and microbiota members mediate the beneficial effects of a therapeutic food for malnutrition

    Get PDF
    Microbiota-directed complementary food (MDCF) formulations have been designed to repair the gut communities of malnourished children. A randomized controlled trial demonstrated that one formulation, MDCF-2, improved weight gain in malnourished Bangladeshi children compared to a more calorically dense standard nutritional intervention. Metagenome-assembled genomes from study participants revealed a correlation between ponderal growth and expression of MDCF-2 glycan utilization pathways by Prevotella copri strains. To test this correlation, here we use gnotobiotic mice colonized with defined consortia of age- and ponderal growth-associated gut bacterial strains, with or without P. copri isolates closely matching the metagenome-assembled genomes. Combining gut metagenomics and metatranscriptomics with host single-nucleus RNA sequencing and gut metabolomic analyses, we identify a key role of P. copri in metabolizing MDCF-2 glycans and uncover its interactions with other microbes including Bifidobacterium infantis. P. copri-containing consortia mediated weight gain and modulated energy metabolism within intestinal epithelial cells. Our results reveal structure-function relationships between MDCF-2 and members of the gut microbiota of malnourished children with potential implications for future therapies

    CHILES: HI morphology and galaxy environment at z=0.12 and z=0.17

    Get PDF
    We present a study of 16 HI-detected galaxies found in 178 hours of observations from Epoch 1 of the COSMOS HI Large Extragalactic Survey (CHILES). We focus on two redshift ranges between 0.108 <= z <= 0.127 and 0.162 <= z <= 0.183 which are among the worst affected by radio frequency interference (RFI). While this represents only 10% of the total frequency coverage and 18% of the total expected time on source compared to what will be the full CHILES survey, we demonstrate that our data reduction pipeline recovers high quality data even in regions severely impacted by RFI. We report on our in-depth testing of an automated spectral line source finder to produce HI total intensity maps which we present side-by-side with significance maps to evaluate the reliability of the morphology recovered by the source finder. We recommend that this become a common place manner of presenting data from upcoming HI surveys of resolved objects. We use the COSMOS 20k group catalogue, and we extract filamentary structure using the topological DisPerSE algorithm to evaluate the \hi\ morphology in the context of both local and large-scale environments and we discuss the shortcomings of both methods. Many of the detections show disturbed HI morphologies suggesting they have undergone a recent interaction which is not evident from deep optical imaging alone. Overall, the sample showcases the broad range of ways in which galaxies interact with their environment. This is a first look at the population of galaxies and their local and large-scale environments observed in HI by CHILES at redshifts beyond the z=0.1 Universe.Comment: 23 pages, 12 figures, 1 interactive 3D figure, accepted to MNRA

    Disease Burden and Functional Outcomes in Congenital Myotonic Dystrophy: A Cross-Sectional Study

    Get PDF
    OBJECTIVE: Herein, we describe the disease burden and age-related changes of congenital-onset myotonic dystrophy (CDM) in childhood. METHODS: Children with CDM and age-matched controls aged 0 to 13 years were enrolled. Participants were divided into cohorts based on the following age groups: 0-2, 3-6, and 7-13 years. Each cohort received age-appropriate evaluations including functional testing, oral facial strength testing, neuropsychological testing, quality-of-life measurements, and ECG. Independent-samples t test or Wilcoxon 2-sample test was used to compare the differences between children with CDM and controls. Probability values less than 0.05 are reported as significant. RESULTS: Forty-one participants with CDM and 29 healthy controls were enrolled. The 6-minute walk was significantly different between CDM (258.3 m [SD 176.0]) and control participants (568.2 m [SD 73.2]). The mean lip force strength was significantly different in CDM (2.1 N [SD 2.8)] compared to control participants (17.8 N [SD 7.6]). In participants with CDM, the mean IQ (65.8; SD 18.4) was 3 SDs below the mean compared to standardized norms. Measurements of grip strength, sleep quality, and quality of life were also significantly different. Strength measures (oral facial strength, grip strength, and 6-minute walk) correlated with each other but not with participant IQ. CONCLUSIONS: This work identifies important phenotypes associated with CDM during childhood. Several measures of strength and function were significantly different between participants with CDM and controls and may be useful during future therapeutic trials
    corecore