6,625 research outputs found
Hydrostatic pressure induced Dirac semimetal in black phosphorus
Motivated by recent experimental observation of an hydrostatic pressure
induced transition from semiconductor to semimetal in black phosphorus [Chen et
al. in arXiv:1504.00125], we present the first principles calculation on the
pressure effect of the electronic structures of black phosphorus. It is found
that the band crossover and reversal at the Z point occur around the critical
pressure Pc1=1.23 Gpa, and the band inversion evolves into 4 twofold-degenerate
Dirac cones around the Z point, suggesting a 3D Dirac semimetal. With further
increasing pressure the Dirac cones in the Gamma-Z line move toward the Gamma
point and evolve into two hole-type Fermi pockets, and those in the Z-M lines
move toward the M point and evolve into 2 hole-type Fermi pockets up to P=4.0
Gpa. It demonstrates clearly that the Lifshitz transition occurs at
from semiconductor to 3D Dirac semimetal protected by the nonsymmorphic space
symmetry of bulk. This suggests the bright perspective of black phosphorus for
optoelectronic and electronic devices due to its easy modulation by pressure.Comment: 7 pages, 9 figures, and 2 table
Recommended from our members
All-Solid-State Batteries Using Rationally Designed Garnet Electrolyte Frameworks
Functioning bulk-type all-solid-state batteries in a practical form factor with composite positive electrodes, using Al-substituted Li7La3Zr2O12 (LLZO) as the solid electrolyte, have been demonstrated for the first time. The devices incorporate bilayers composed of dense LLZO membranes and porous LLZO scaffolds infiltrated with LiNi0.6Mn0.2Co0.2O2 and other components as positive electrodes, combined with lithium anodes. The porous scaffolds are prepared using an easily scaled freeze-tape-casting method. The unidirectional pores of the scaffold facilitate infiltration of cathode components and shorten lithium ion diffusion path lengths, while the addition of a soft ionically conductive solid to the scaffold ensures good contact among the components
A spin injector
We theoretically put forward a spin injector, which consists of a three-terminal ferromagnetic-metal (FM) nonmagnetic-semiconductor (NS)-superconductor (SC) mesoscopic hybrid system. This device can inject not only the spin-up current but also the pure spin current into the NS lead. The crossed Andreev reflection plays a key role in this device. Such a spin injector may be realized within the reach of the present-day technology. © 2004 American Institute of Physics.published_or_final_versio
Quantitatively probing two-electron entanglement with a spintronic quantum eraser
published_or_final_versio
High-efficiency Urban-traffic Management in Context-aware Computing and 5G Communication
With the increasing number of vehicle and traffic jams, urban-traffic management is becoming a serious issue. In this article, we propose novel four-tier architecture for urban-traffic management with the convergence of vehicle ad hoc networks (VANETs), 5G wireless network, software-defined network (SDN), and mobile-edge computing (MEC) technologies. The proposed architecture provides better communication and rapider responsive speed in a more distributed and dynamic manner. The practical case of rapid accident rescue can significantly cut down the time for rescue. Key technologies with respect to vehicle localization, data pre-fetching, traffic lights control, and traffic prediction are also discussed. Obviously, the novel architecture shows noteworthy potential for alleviating the traffic congestion and improving the efficiency of urban-traffic management
Recommended from our members
Oriented porous LLZO 3D structures obtained by freeze casting for battery applications
All solid-state lithium batteries are, potentially, higher energy density and safer alternatives to conventional lithium-ion batteries (LIBs). These are particularly attractive characteristics for large-scale applications such as electric vehicles and grid energy storage systems. However, the thin film deposition techniques used to make current devices are not readily scalable, and result in low areal capacities, which translate to low practical energy densities. To overcome these deficiencies, it is necessary to design thicker electrodes similar to what are used in LIBs (30-100 μm), in which the active material is composited with an ionic conductor and an electronically conducting additive, to overcome transport limitations. In this paper, we propose a method for making such an electrode, starting with a porous scaffold, i.e. Li7La3Zr2O12 (LLZO), made by freeze casting, which is then infiltrated with the active material LiNi0.6Mn0.2Co0.2O2 (NMC-622) and other components. The freeze casting technique results in the formation of oriented channels with low tortuosity, which run roughly parallel to the direction of the current. The scaffolds were characterized with synchrotron X-ray micro-tomography for structural analysis, as well as synchrotron X-ray fluorescence to map the elemental distribution in the infiltrated composite. A hybrid half-cell was constructed and cycled as proof of principle, and it showed good stability. In addition, a bilayer structure consisting of a porous layer combined with a dense LLZO film was successfully made as a prototype of an all solid-state battery. A mathematical model was established to propose optimized scaffold structures for battery performance
On the stability of the exact solutions of the dual-phase lagging model of heat conduction
The dual-phase lagging (DPL) model has been considered as one of the most promising theoretical approaches to generalize the classical Fourier law for heat conduction involving short time and space scales. Its applicability, potential, equivalences, and possible drawbacks have been discussed in the current literature. In this study, the implications of solving the exact DPL model of heat conduction in a three-dimensional bounded domain solution are explored. Based on the principle of causality, it is shown that the temperature gradient must be always the cause and the heat flux must be the effect in the process of heat transfer under the dual-phase model. This fact establishes explicitly that the single- and DPL models with different physical origins are mathematically equivalent. In addition, taking into account the properties of the Lambert W function and by requiring that the temperature remains stable, in such a way that it does not go to infinity when the time increases, it is shown that the DPL model in its exact form cannot provide a general description of the heat conduction phenomena
Cognitively-inspired Agent-based Service Composition for Mobile & Pervasive Computing
Automatic service composition in mobile and pervasive computing faces many
challenges due to the complex and highly dynamic nature of the environment.
Common approaches consider service composition as a decision problem whose
solution is usually addressed from optimization perspectives which are not
feasible in practice due to the intractability of the problem, limited
computational resources of smart devices, service host's mobility, and time
constraints to tailor composition plans. Thus, our main contribution is the
development of a cognitively-inspired agent-based service composition model
focused on bounded rationality rather than optimality, which allows the system
to compensate for limited resources by selectively filtering out continuous
streams of data. Our approach exhibits features such as distributedness,
modularity, emergent global functionality, and robustness, which endow it with
capabilities to perform decentralized service composition by orchestrating
manifold service providers and conflicting goals from multiple users. The
evaluation of our approach shows promising results when compared against
state-of-the-art service composition models.Comment: This paper will appear on AIMS'19 (International Conference on
Artificial Intelligence and Mobile Services) on June 2
Initial validation of Chinese Pain Assessment in Advanced Dementia Scale (C-PAINAD)
2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
- …