33,134 research outputs found
MicroRNA410 Inhibits Pulmonary Vascular Remodeling via Regulation of Nicotinamide Phosphoribosyltransferase
Nicotinamide phosphoribosyltransferase (NAMPT) upregulation in human pulmonary artery endothelial cells (hPAECs) is associated with pulmonary arterial hypertension (PAH) progression and pulmonary vascular remodeling. The underlying mechanisms regulating NAMPT expression are still not clear. In this study, we aimed to study the regulation of NAMPT expression by microRNA410 (miR410) in hPAECs and explore the role of miR410 in the pathogenesis of experimental pulmonary hypertension. We show that miR410 targets the 3' UTR of NAMPT and that, concomitant with NAMPT upregulation, miR410 is downregulated in lungs of mice exposed to hypoxia-induced pulmonary hypertension (HPH). Our results also demonstrate that miR410 directly inhibits NAMPT expression. Overexpression of miR410 in hPAECs inhibits basal and VEGF-induced proliferation, migration and promotes apoptosis of hPAECs, while miR410 inhibition via antagomirs has the opposite effect. Finally, administration of miR410 mimics in vivo attenuated induction of NAMPT in PAECs and prevented the development of HPH in mice. Our results highlight the role of miR410 in the regulation of NAMPT expression in hPAECs and show that miR410 plays a potential role in PAH pathobiology by targeting a modulator of pulmonary vascular remodeling
Heavy and Light Quarks with Lattice Chiral Fermions
The feasibility of using lattice chiral fermions which are free of
errors for both the heavy and light quarks is examined. The fact that the
effective quark propagators in these fermions have the same form as that in the
continuum with the quark mass being only an additive parameter to a chirally
symmetric antihermitian Dirac operator is highlighted. This implies that there
is no distinction between the heavy and light quarks and no mass dependent
tuning of the action or operators as long as the discretization error is negligible. Using the overlap fermion, we find that the
(and ) errors in the dispersion relations of the pseudoscalar and
vector mesons and the renormalization of the axial-vector current and scalar
density are small. This suggests that the applicable range of may be
extended to with only 5% error, which is a factor of
larger than that of the improved Wilson action. We show that the generalized
Gell-Mann-Oakes-Renner relation with unequal masses can be utilized to
determine the finite errors in the renormalization of the matrix elements
for the heavy-light decay constants and semileptonic decay constants of the B/D
meson.Comment: final version to appear in Int. Jou. Mod. Phys.
Optical spectroscopy study on CeTe: evidence for multiple charge-density-wave orders
We performed optical spectroscopy measurement on single crystal of CeTe,
a rare-earth element tri-telluride charge density wave (CDW) compound. The
optical spectra are found to display very strong temperature dependence.
Besides a large and pronounced CDW energy gap being present already at room
temperature as observed in earlier studies, the present measurement revealed
the formation of another energy gap at smaller energy scale at low temperature.
The second CDW gap removes the electrons near E which undergo stronger
scattering. The study yields evidence for the presence of multiple CDW orders
or strong fluctuations in the light rare-earth element tri-telluride.Comment: 5 figure
Strong interface-induced spin-orbit coupling in graphene on WS2
Interfacial interactions allow the electronic properties of graphene to be
modified, as recently demonstrated by the appearance of satellite Dirac cones
in the band structure of graphene on hexagonal boron nitride (hBN) substrates.
Ongoing research strives to explore interfacial interactions in a broader class
of materials in order to engineer targeted electronic properties. Here we show
that at an interface with a tungsten disulfide (WS2) substrate, the strength of
the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The
induced SOI leads to a pronounced low-temperature weak anti-localization (WAL)
effect, from which we determine the spin-relaxation time. We find that
spin-relaxation time in graphene is two-to-three orders of magnitude smaller on
WS2 than on SiO2 or hBN, and that it is comparable to the intervalley
scattering time. To interpret our findings we have performed first-principle
electronic structure calculations, which both confirm that carriers in
graphene-on-WS2 experience a strong SOI and allow us to extract a
spin-dependent low-energy effective Hamiltonian. Our analysis further shows
that the use of WS2 substrates opens a possible new route to access topological
states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines.
Final version with expanded discussion of the relation between theory and
experiments to be published in Nature Communication
The magnetoresistance and Hall effect in CeFeAsO: a high magnetic field study
The longitudinal electrical resistivity and the transverse Hall resistivity
of CeFeAsO are simultaneously measured up to a magnetic field of 45T using the
facilities of pulsed magnetic field at Los Alamos. Distinct behaviour is
observed in both the magnetoresistance Rxx({\mu}0H) and the Hall resistance
Rxy({\mu}0H) while crossing the structural phase transition at Ts \approx 150K.
At temperatures above Ts, little magnetoresistance is observed and the Hall
resistivity follows linear field dependence. Upon cooling down the system below
Ts, large magnetoresistance develops and the Hall resistivity deviates from the
linear field dependence. Furthermore, we found that the transition at Ts is
extremely robust against the external magnetic field. We argue that the
magnetic state in CeFeAsO is unlikely a conventional type of spin-density-wave
(SDW).Comment: 4 pages, 3 figures SCES2010, To appear in J. Phys.: Conf. Ser. for
SCES201
- …