93 research outputs found

    Biomass-derived three-dimensional porous N-doped carbonaceous aerogel for efficient supercapacitor electrodes

    No full text
    Functionalized carbonaceous materials with hierarchical structure and developed porosity are highly desired in energy storage and conversion fields. In this work, a facile and scalable hydrothermal methodology was established to synthesise three-dimensional (3D) N-doped carbonaceous aerogels using biomass-based starting materials and polypyrrole as N-source. The effect of different calcination temperatures on the structural properties, type and content of N-species and electrochemical performance of the 3D N-doped carbonaceous aerogels were uncovered. Thanks to the combinatorial effect of the appropriate N content and porous structure, the obtained samples exhibited excellent electrochemical performance, in particular, an outstanding specific capacitance of 281.0 F g-1 achieved on the sample calcined at 600 °C. This methodology offers a new fabrication strategy to prepare nanoscale carbonaceous materials with desirable morphology and hierarchical architecture of great potentials for the applications in energy fields

    Efficient Personalized Federated Learning via Sparse Model-Adaptation

    Full text link
    Federated Learning (FL) aims to train machine learning models for multiple clients without sharing their own private data. Due to the heterogeneity of clients' local data distribution, recent studies explore the personalized FL that learns and deploys distinct local models with the help of auxiliary global models. However, the clients can be heterogeneous in terms of not only local data distribution, but also their computation and communication resources. The capacity and efficiency of personalized models are restricted by the lowest-resource clients, leading to sub-optimal performance and limited practicality of personalized FL. To overcome these challenges, we propose a novel approach named pFedGate for efficient personalized FL by adaptively and efficiently learning sparse local models. With a lightweight trainable gating layer, pFedGate enables clients to reach their full potential in model capacity by generating different sparse models accounting for both the heterogeneous data distributions and resource constraints. Meanwhile, the computation and communication efficiency are both improved thanks to the adaptability between the model sparsity and clients' resources. Further, we theoretically show that the proposed pFedGate has superior complexity with guaranteed convergence and generalization error. Extensive experiments show that pFedGate achieves superior global accuracy, individual accuracy and efficiency simultaneously over state-of-the-art methods. We also demonstrate that pFedGate performs better than competitors in the novel clients participation and partial clients participation scenarios, and can learn meaningful sparse local models adapted to different data distributions.Comment: Accepted to ICML 202

    Revisiting Personalized Federated Learning: Robustness Against Backdoor Attacks

    Full text link
    In this work, besides improving prediction accuracy, we study whether personalization could bring robustness benefits to backdoor attacks. We conduct the first study of backdoor attacks in the pFL framework, testing 4 widely used backdoor attacks against 6 pFL methods on benchmark datasets FEMNIST and CIFAR-10, a total of 600 experiments. The study shows that pFL methods with partial model-sharing can significantly boost robustness against backdoor attacks. In contrast, pFL methods with full model-sharing do not show robustness. To analyze the reasons for varying robustness performances, we provide comprehensive ablation studies on different pFL methods. Based on our findings, we further propose a lightweight defense method, Simple-Tuning, which empirically improves defense performance against backdoor attacks. We believe that our work could provide both guidance for pFL application in terms of its robustness and offer valuable insights to design more robust FL methods in the future. We open-source our code to establish the first benchmark for black-box backdoor attacks in pFL: https://github.com/alibaba/FederatedScope/tree/backdoor-bench.Comment: KDD 202
    • …
    corecore