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ABSTRACT
As a common platform for pervasive devices, Android has been
targeted by numerous attacks that exploit vulnerabilities in its apps
and the operating system. Compared to app vulnerabilities, system-
level vulnerabilities in Android, however, were much less explored
in the literature. In this paper, we perform the first systematic study
of Android system vulnerabilities by comprehensively analyzing all
2,179 vulnerabilities on the Android Security Bulletin program over
about three years since its initiation in August 2015. To this end,
we propose an automatic analysis framework, upon a hierarchical
database structure, to crawl, parse, clean, and analyze vulnerability
reports and their publicly available patches. This framework in-
cludes (i) a lightweight technique to pinpoint the affected modules
of given vulnerabilities; (ii) a robust method to study the complexity
of patch code; and most importantly, (iii) a similarity-based algo-
rithm to cluster patch code patterns. Our clustering algorithm first
extracts patch code’s essential changes that not only concisely re-
flect syntactic changes but also keep important semantics, and then
leverages affinity propagation to automatically generate clusters
based on their pairwise similarity. It allows us to obtain 16 vulnera-
bility patterns, including six new ones not known in the literature,
and we further analyze their characteristics via case studies. Besides
identifying these useful patterns, we also find that 92% Android
vulnerabilities are located in the low-level modules (mostly in na-
tive libraries and the kernel), whereas the framework layer causes
only 5% vulnerabilities, and that half of the vulnerabilities can be
fixed in fewer than 10 lines of code each, with 110 out of 1,158 cases
requiring only one single line of code change. We further discuss
the implications of all these results. Overall, we provide a clear
overview and new insights about Android system vulnerabilities.

∗The idea was proposed by this author, and partial of his work was performed while
at SOBUG (https://sobug.com/) during a research internship as a vulnerability analyst.
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1 INTRODUCTION
Android has become the most popular system for pervasive de-
vices over years, with a global market share of smartphones at over
80% [8]. As more and more attacks are targeting at Android by
exploiting vulnerabilities in its apps and the system [7, 23, 61, 75],
detecting and analyzing Android vulnerabilities has been an emerg-
ing topic in Android security research. Compared to app vulnera-
bilities that have been extensively studied (e.g., [22, 24, 25, 27, 30,
34, 42, 48, 54, 58, 66–69, 72, 79, 80]), system-level vulnerabilities in
Android, however, were much less explored in the literature (mainly
about framework-layer vulnerabilities, e.g., [16, 37, 60, 64]). This
could be due to the difficulty of understanding low-level system
vulnerabilities and the lack of analysis resources.

The recent arise of bug bounty programs gives researchers a
new source to systematically analyzing vulnerabilities. For example,
Finifter et al. [29] performed the first empirical study of vulnerabil-
ity rewards programs (VRP) using the Chrome and Firefox VRPs,
and Zhao et al. [76] measured the vulnerability reports submitted by
white-hats on the Hackerone and Wooyun vulnerability platforms.
Android also has its own bug bounty program called the Android
Security Bulletin program. A recent study [52] utilized the Bulletin
resource to analyze Android system vulnerabilities; however, it re-
lied on significant manual effort to measure 660 vulnerabilities only
for metadata and statistical results. Moreover, only text information
from corresponding CVE (Common Vulnerabilities and Exposures)
reports was analyzed, while the patch was left not mined.

In this paper, we aim to fill the current gap in understanding
Android system vulnerabilities by performing the first systematic
study that covers all 2,179 vulnerabilities and their 1,349 publicly
available patches on the Android Security Bulletin program from

https://sobug.com/
https://doi.org/10.1145/3321705.3329831
https://doi.org/10.1145/3321705.3329831


its initiation in August 2015 to our analysis launched in June 2018.
To make such scale a study and to easily adapt to larger datasets
in the future, it is critical to adopt a systematic methodology with
manual efforts involved only for configuring the analysis and inter-
preting the results. Fortunately, with structured Bulletin reports,
we are able to propose such an automatic analysis framework that
can crawl, parse, clean, and analyze vulnerability reports and their
patches. Specifically, it builds upon a hierarchical database to store
all the text and code information of each Android vulnerability in
an organized and searchable structure, and the major novelty lies
in its three analyzers for the analysis of vulnerable modules, patch
code complexity, and vulnerability patterns. In particular, how to
automatically cluster vulnerability patterns from a number of ini-
tially irrelevant code fragments (i.e., contiguous lines of code [40])
is the key challenge. We now elaborate these three analyzers and
the corresponding analysis results.

In the first analyzer, we classify vulnerabilities by different An-
droid modules to shed light on the system modules that are most
susceptible and thus require more security attention. Unlike the
prior work [52] that employs manual analysis, we propose a light-
weight technique that leverages two useful features of Android Bul-
letin reports (see §3.2 for details) to effectively pinpoint the affected
modules of given vulnerabilities. With this analyzer, we successfully
obtain the layered map of vulnerable Android modules, and find
that 92% of the Android vulnerabilities are located in low-level mod-
ules that are mainly coded in C/C++, especially native libraries and
kernel drivers. In contrast, the framework and application layers
contribute to only 5% and 2.5% vulnerabilities, respectively. More-
over, the media, Wi-Fi, and telephony related modules introduce
hundreds of vulnerabilities across different layers, making them
highly risky. We also perform more in-depth study on code with a
large number of vulnerabilities, e.g., MPEG4Extractor.cpp in the
libstagefrightmedia library that appeared in 26 distinct patches.

Secondly, we present a robust method to study the complexity of
patch code, in which we extract the “real” patch diff code by exclud-
ing not only the auxiliary code lines (e.g., the include/import and
the comment statements) but also the test code that is associated
with patches. We analyze the complexity of diff code extracted at
both the file and the code line granularity. Results show that a sig-
nificant portion of the Android vulnerabilities involve non-complex
fixes, with 60% requiring only one file change and with 50% fixable
in fewer than 10 lines of code. This indicates that many Android
vulnerabilities are likely implementation bugs.

Lastly, we propose a similarity-based algorithm to automatically
cluster Android patch code patterns, and reveal system developers’
common coding mistakes that lead to vulnerabilities. Note that this
task is different from the classic code clone detection problem [17,
39, 40, 43, 44, 49–51, 71] because our goal of clustering similar
patches is about finding similar “changes” that involve four pieces
of code per pair of patches, whereas code clone detection focuses
only on two pieces of “original” code per comparison. Hence, we
design a new algorithm specifically for similar patch clustering.
We first extract diff code fragments’ essential changes and express
each such change into one code text. We then generate a similarity
matrix by calculating these code texts’ pairwise similarity, and
further leverage affinity propagation [31] to automatically generate

Figure 1: A sample webpage of Android Security Bulletin website.

clusters according to the matrix. Finally, patterns are abstracted
from top similar cases within clusters.

By running this algorithm, we obtain 83 initial clusters of which
we quickly filter out 50 small-size ones as they contain only fewer
than 10 code fragments each and actually do not exhibit evident
security-oriented patterns. Out of the remaining 33 clusters, 28
(84.8%) are associated with certain patterns, with 19 clusters for
security-oriented patterns and 9 clusters for non-security-related
patterns. We eventually extract 16 vulnerability patterns from 19
security-oriented clusters. They include not only traditional pat-
terns, e.g., overflow and uninitialized data, but also six new ones
not known in the literature, such as mis-retrieving Android service
by reference and inconsistent Android Parcelable serialization. We
then analyze their characteristics by performing case studies.

Furthermore, we discuss four implications of our analysis results.
Besides quantitatively pointing out the seriousness of Android
system vulnerabilities and the necessity of adopting them into
future threat models, our results can help system developers avoid
making similar mistakes in the same module and guide program
analysis techniques for automatic vulnerability detection.

2 ANDROID SECURITY BULLETIN PROGRAM
Android Security Bulletin program (https://source.android.com/
security/bulletin/) started in August 2015 and is updated monthly.
Figure 1 shows a sample page (October 2016) of its website. It lists
all vulnerabilities that were fixed and made public in a calendar
month. As shown on the right-hand side of Figure 1, it first gives
an outline of the vulnerabilities in different modules, such as the
service manager, the lock setting service, and the media server. For
each module, it further lists the detailed vulnerability information,
including CVE, the Android vulnerability ID (AID), the vulnerability
severity, and the updated Android versions. In particular, the URL
of AID actually points to the webpage of the corresponding patch
code, and we call such URL “the patch URL”.

3 METHODOLOGY
Our goal is to conduct a systematic study of Android system vul-
nerabilities by comprehensively analyzing all vulnerabilities on the
Android Security Bulletin program from its initiation in August
2015 to our analysis launched in June 2018. To minimize manual

https://source.android.com/security/bulletin/
https://source.android.com/security/bulletin/
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Figure 2: The workflow of our automatic analysis framework for Android system vulnerability reports and their patches.

One vulnerability record in the metadata DB

Two corresponding records in the patch code DB One or more code fragments in each JSON block

{"cmds/servicemanager/service

_manager.c":[{

"line":3, 

"code":[

["A","if (uid >= AID_APP) {"],

["A","return 0;"],

["A","}"]

]}]}

{"cmds/servicemanager/Android.mk":[{"line":1,

"code":[["D","LOCAL_SHARED_LIBRARIES := 

liblog libselinux"], 

["A","LOCAL_SHARED_LIBRARIES := liblog

libcutils libselinux"]]}], 

"cmds/servicemanager/service_manager.c":[{"line

":1, "code":[["D","if (uid >= AID_APP) {"], 

["A","if (multiuser_get_app_id(uid) >= AID_APP) 

{"]]}]}

Figure 3: An example illustrating our hierarchical database structure for storing all the text and code information of each
Android vulnerability in an organized and searchable structure.

analysis as in previous work [41, 52], we propose the first analysis
framework that can automatically crawl, parse, clean, and analyze
Android bulletin reports and their publicly available patches. With
such a framework, manual efforts are required only for configuring
the analysis and interpreting the results (e.g., abstracting patterns
from automatically generated clusters). It can also easily adapt to
larger datasets in the future with evolving analysis results.

Overview. Figure 2 shows the overall workflow of our analysis
framework. It consists of a bulletin crawler, a patch crawler, a
cleaner, and three analyzers. All these components are written in
Python, with 1,230 lines of code excluding the library support, e.g.,
Selenium [14] for crawlers and Jellyfish [9] for string similarity
metrics. We summarize the functionality of each component as
follows:
• Bulletin crawler is responsible for crawling the basic infor-
mation of every vulnerability on Android Bulletin website.
The information crawled includes CVE (Common Vulner-
ability Entry) id, vulnerability type, vulnerability severity,
and several other meta information. One important meta
information is the URLs of each vulnerability’s patch code,
which will be further used by the patch crawler. All this
information is parsed directly from the bulletin website’s
HTML files and saved into a vulnerability metadata database.
• Patch crawler takes patch URLs as input to crawl the patch
code websites and then builds a patch code database. Since
there are several types of patch code websites for Android
bulletin vulnerabilities, we build all corresponding patch
crawlers. The HTML parsing here is more complicated than
that in the bulletin crawler, because extracting diff code of
patches into organized structures is difficult; see details in
§3.3.
• Cleaner is designed for cleaning the raw database, especially
the text information in the vulnerability metadata. This is

because Android bulletin reports are still manually created
and thus could come with disorganized text. For example, the
“EoP” vulnerability type could be represented as “elevation-
of-privilege-vulnerability”, “elevation_of_privilege”, and even
“eopv”. Moreover, although the majority of patch URLs are
correct, a few of them are outdated (e.g., “commit/?id=” in-
stead of “patch/?id=”), or contain unescaped characters (e.g.,
“%2F”) and redundant characters (e.g., redundant “/” in “la//”).
Cleaner cleans all this misconfigured information in a one-
time manner.
• Analyzers take the cleaned database as input and output
analysis results. Besides the vulnerability metadata analysis,
we have designed three analyzers (as shown in Figure 2) to
support vulnerable module analysis, patch code complexity
analysis, and patch code pattern analysis. We will illustrate
them in subsequent subsections.

Challenges. Since we are the first to study Android system
vulnerabilities in an automatic fashion, there are some unique
challenges. Notably, our three analyzers face the challenges on
effectively pinpointing vulnerability modules (§3.2), robustly mea-
suring patch code complexity (§3.3), and automatically clustering
vulnerability patterns (§3.4), respectively. Before explaining these
challenges in detail and our methods of overcoming them, we first
show in §3.1 how we store all the text and code information of each
Android vulnerability in an organized and searchable structure.

3.1 Designing a Hierarchical Database
Structure

The first challenge is in representing vulnerabilities’ text and code
information in a way that analysts can directly make SQL queries
to retrieve the desired vulnerability information without writing
additional scripts. This is challenging because we notice that 1) an



Android vulnerability might be associated with several patches;
2) one patch may include several affected code files; 3) one code
file may contain multiple patched code fragments; and 4) one code
fragment usually covers several code lines.

We propose to build a hierarchical database structure and use
a carefully designed nested JSON [1] format to represent patched
code in a hierarchical way. Figure 3 shows the high-level picture of
our hierarchical database structure using a specific vulnerability
example (CVE-2016-3900). We first use a database table to record
all the metadata of this vulnerability, as mentioned earlier in the
bulletin crawler component. Since CVE-2016-3900 involves two
patches, we then save the information of both patches in the patch
code database and point them to the corresponding row id (1586 in
this example) in the metadata database. Finally, we design a nested
JSON format to represent all diff code of each patch. In this way,
we use only one database field (“DiffCode” in Figure 3) to cover the
patch code and avoid having to dynamically extend the database.
In each JSON, we use code name as the JSON key and use nested
arrays to record each code and their code fragments. Figure 3 shows
the two JSON examples of CVE-2016-3900, one with one code file
and the other with two. Here all the three pieces list only one code
fragment each, but it is possible that multiple fragments occur in a
single patch code.

With this hierarchical database structure, we are able to com-
pose complex search of the vulnerability database directly in SQL
queries. Listing 1 demonstrates one query example that counts the
median number of code fragments in each patched code file. We use
SQLite’s JSON1 extension [10] to handle nested JSON. For exam-
ple, in Listing 1, we use the json_each() API to decompose each
“DiffCode” field into a key-value row, where the key refers to the
code file name and the value is a nested array of code fragments.
We thus can use the key field to exclude assembly code files and
use json_array_length(value) to further count code fragments.
In this way, we can obtain the vulnerability search results (e.g., the
median number of per-file code fragments is 2) without writing
dedicated scripts.

Listing 1: A SQL query example of searching the database.
select median(json_array_length(value))

from PatchTable , json_each(PatchTable.DiffCode)

where PatchTable.DiffCode like '{%}'

and key not like '%.s';

3.2 Identifying Vulnerable Modules
Classifying vulnerabilities by different Android modules can shed
light on the system modules that are most susceptible and thus
require more security attention. Therefore, we include a dedicated
analyzer in our analysis framework to identify vulnerable Android
modules. However, it is challenging because there is no clear mod-
ule information in CVE reports. As a result, previous work [52]
employed two manpower to manually inspect the 660 Android
vulnerabilities in their dataset.

We propose a lightweight technique that leverages two useful
features of Android Bulletin reports to locate the affected modules
of given vulnerabilities. The first is the patch code paths for those
with publicly available patches, which could imply the module

information. However, the full code paths are often too detailed,
e.g., platform/system/bt/bta/dm/bta_dm_act.cc in CVE-2018-
9355. Fortunately, we found that the Android Security team has
embedded the high-level module path information in patch URLs.
For example, the patch URL of CVE-2018-9355 is https://android.
googlesource.com/platform/system/bt/+/99a263, inwhichwe
can extract the path platform/system/bt (meaning the Bluetooth
stack according to the patch code website [13]) as the affected
module.

Since around half of the vulnerabilities in our dataset have no
publicly available patches, we still need to find another way to iden-
tify vulnerable modules. Moreover, the module path information
of some URLs are coarse-grained, e.g., the aforementioned CVE-
2016-3900 only shows platform/frameworks/native in its patch
URL. Our technique thus leverages the second feature: the Android
Bulletin webpage itself contains certain pattern that records the
module information input by the Android Security team. For in-
stance, in the bulletin webpage shown in Figure 1, we can locate the
HTML field <h3 id="eopv-in-servicemanager"> for CVE-2016-
3900, where “eopv” is the vulnerability type and “servicemanager”
pinpoints the module.

3.3 Extracting and Counting Diff Code
Our second analysis objective is to study the complexity of Android
patch code, and it requires a robust method to extract the “real”
patch diff code and count their line change. This is because not
all modified code lines in a patch are for the vulnerability fix and
some are only auxiliary, e.g., the #include statements in C/C++,
the import statements in Java, and also many comment statements.

Before dealing with those auxiliary code lines, we need to extract
patch code fragments (i.e., contiguous lines of code [40]) from the
raw HTML files and organize them in the format shown in Figure 3.
We first use Selenium [14] to locate the code diff fields [6], i.e.,
“add”, “del”, “ctx”, and “hunk”, in the patch HTML files. We then
use “add”/“del” as the indicators to count contiguous code lines and
use “ctx”/“hunk” as the stop words. In the meantime, we count the
number of line changes for each code fragment as

countFraд =max (countAdd, countDel )

where countAdd and countDel are the total numbers of lines added
or deleted (note that the auxiliary code lines have been excluded
when performing the counting). The number of line changes in a
code fragment, countFraд, is the maximum of the two since any
single line change could contribute to both addition and deletion.
With each individual countFraд counted in a code fragment, the
line change of a file, countFile , is then the corresponding sum.

When counting the number of code line changes, we exclude
the auxiliary code lines as follows. First, the blank lines, after strip-
ing the “+”/“-” symbols and various whitespaces, are eliminated.
Second, the include and import statements in C/C++ and Java are
not taken into consideration when studying the complexity of a
patch. Third, we remove comment statements, some of which are
not easy to be recognized. For example, we need to track forward
across multiple lines to pinpoint the end of a comment block that
uses /* . . . */ in C/C++/Java or <!- - . . . - -!> in XML. Moreover, some
comment blocks are only partially shown in the diff files (e.g., not
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Figure 4: A high-level overview of our similarity-based algorithm to automatically generate patch code clusters.

Table 1: Examples illustrating how we extract patch code’s essential changes.

ID Diff Code Change

C1 - dest.writeLong(mSubId);
writeLong --> writeInt

+ dest.writeInt(mSubId);

C2 - uint8_t len = 0;
uint8_t --> uint32_t

+ uint32_t len = 0;

C3 - void lim_compute_crc32(uint8_t *pDest, uint8_t *pSrc, uint8_t len);
uint8_t --> uint16_t

+ void lim_compute_crc32(uint8_t *pDest, uint8_t *pSrc, uint16_t len);

C4 - const sp<ICameraService>& cs = getCameraService(); sp<ICameraService>&
+ const sp<ICameraService> cs = getCameraService(); --> sp<ICameraService>

C5 - pr_debug(‘%s: ndx=%d base=%p’, __func__, ctrl->ndx, ctrl->base);
%p --> %pK

- pr_debug(‘%s: ndx=%d base=%pK’, __func__, ctrl->ndx, ctrl->base);

C6 - uint64_t slotMask;
--> = 0

+ uint64_t slotMask = 0;

C7 - runtime.start("com.android.internal.os.RuntimeInit", args);
--> , zygote

+ runtime.start("com.android.internal.os.RuntimeInit", args, zygote);

C8 - return true; return true
+ return false; --> return false

C9 - if(value >= ps_sps->i4_pic_size_in_ctb)
if --> if || value <= 0

+ if(value >= ps_sps->i4_pic_size_in_ctb || value <= 0)

C10 - #define MAX_NUM_INPUT_OUTPUT_BUFFERS 32
#define 32 --> #define 64

+ #define MAX_NUM_INPUT_OUTPUT_BUFFERS 64

starting with “/*” but with “*”), which require us to track the subse-
quent lines for determining whether the current line is a comment
statement or not.

Besides the auxiliary code lines, we found that some patches
also include test code. For example, CVE-2017-13176 includes core/
tests/coretests/src/android/net/UriTest.java [4] which should
not be counted when calculating patch complexity. To remove the
impact of such test code, we simply use the keyword “Test” or “test”
to exclude the test code without affecting the normal one.

3.4 Clustering Patch Code Patterns
In the last and most important analyzer, we aim to automatically
cluster Android patch code to reveal system developers’ common
coding mistake patterns. Specifically, our objective is to cluster
(patch) code-level patterns, such as changes in an integer type from
uint8_t to uint32_t and changes in a character of printing kernel
addresses from %p to %pK. These patterns, after interpreting with
security knowledge, can reflect the root causes of corresponding
vulnerabilities, e.g., inappropriate usage of pointer %p in kernel
address printing could signal information leakage. Figure 4 depicts
a high-level overview of our similarity-based algorithm, which is
comprised of three major steps as follows.

First, different from code clone detection approaches [17, 39, 40,
43, 44, 49–51, 71] that typically compare multiple versions of the
same code piece or code from multiple software, we need to extract
“diff of the diff” from code fragments. More specifically, we extract
patch code’ essential changes that not only concisely reflect syntax-
level changes but also maintain important semantic information
by keeping change-related tokens. Table 1 shows various exam-
ples to illustrate how we extract essential changes of patch code.
For example, in code C1, we not only extract syntax-level change
(i.e., Long to Int) but also keep the full token (i.e., function name
in this example) to capture change-related semantic. Similarly, in
code C2 and C3, the essential change we extracted is uint8_t to
uint16|32_t, which is much more concise than the original diff
code and also more meaningful than the syntax-only change (i.e., 8
to 16|32). The only special handling is that we add keywords for
return, if, and define statements (see code C8 to C10) to better
maintain their semantic changes.

To express each code change into one code text, we employ a
special character “-->” to represent the change process. For code
fragments that are fully added or deleted, we simply use their
original JSON format shown in Figure 3, which clearly marks the
added or deleted code lines. Note that we currently focus only



on short code fragments, since our objective is to reveal common
coding mistake patterns that are usually not complicated. We leave
as our future work to cluster complex vulnerability patterns that
involve long code fragments.

Second, with extracted code change texts, we then calculate
their pairwise similarity to generate a large similarity matrix, as
shown in Figure 4. Each row of this matrix is a vector of similarity
scores between one code change text and all the others. The simi-
larity score is represented as a string distance. There are multiple
string distance metrics, and we tested four common ones includ-
ing Jaro distance, Jaro-Winkler distance, Levenshtein distance, and
Damerau-Levenshtein distance. We found that Jaro-Winkler dis-
tance is the most suitable string distance metric in our problem
context — clustering using Levenshtein or Damerau-Levenshtein
distance can generate only one cluster, and Jaro distance does not
perform well in some situations (e.g., clustering memset() usages).

Third, we automatically generate patch code clusters according
to the matrix. We choose affinity propagation [31] as our clustering
algorithm because it does not require pre-estimation of the number
of clusters as in k-means or k-medoids clustering algorithms. To
obtain good clustering results, we first did tests to find affinity
propagation’s optimal damping factor [15] at 0.9 in our problem
context. Note that such parameter tuning is simple and performed
only once.

4 ANALYSIS RESULTS
In this section, we present our analysis results of Android system
vulnerabilities. We first introduce the dataset and vulnerability
metadata in §4.1, then describe our analysis results of vulnerable
modules, patch code complexity, and patch code patterns from §4.2
to §4.4, and finally discuss their implications in §4.5.

4.1 Dataset and Vulnerability Metadata
Till we initiated the analysis in June 2018, we have collected the
information of 2,179 vulnerabilities on the Android Security Bulletin
program and their 1,349 publicly available patches (from 1,158
distinct vulnerabilities). These vulnerabilities include all Android
vulnerabilities reported over around three years (from August 2015
to June 2018). For vulnerability clustering, we extract a total of 940
short code fragments from these 1,349 patches.

Table 2 shows four major vulnerability types and four levels
of vulnerability severity that are defined by the Android Security
team. Among all the vulnerability types, we can see that the EoP
(elevation of privilege) is the most common one with a total of 954
(43.8%) vulnerabilities. ID (information disclosure) and the most
dangerous RCE (remote code execution) rank second and third with
313 and 254 vulnerabilities, respectively. DoS (denial of service),
unsurprisingly, is the least affected vulnerability type with 160
vulnerabilities. Additionally, there are 498 vulnerabilities marked
as “N/A” by Google, which are because of the closed-source driver
components of which the vulnerability details are not ready to be
made public at the time of our crawling. Despite this, we estimate
that the “N/A” type of vulnerabilities would mainly cause EoP and
RCE issues by correlating with the severity (i.e., via the 402 high
and 82 critical vulnerabilities in the “N/A” category).

Table 2: Vulnerability metadata: type and severity

RCE EoP ID DoS N/A
Critical 200 156 0 0 82 438
High 47 641 112 133 402 1,335
Moderate 6 156 197 19 14 392
Low 1 1 4 8 0 14

254 954 313 160 498
Notes:
RCE = Remote Code Execution; EoP = Elevation of Privilege;
ID = Information Disclosure; DoS = Denial of Service.
N/A = Not Available, due to closed-source driver components.

Regarding the vulnerability severity, high-level severity accounts
for the largest proportion with 1,335 (61.3%) vulnerabilities. The
critical- and the moderate-level severity hold the remaining 38%
portions, with only 14 vulnerabilities being rated as at low-level
severity. By correlating the severity with the vulnerability type, we
further find that the critical-level severity is mostly related to RCE
issues, and similarly, high severity appears the most significantly in
EoP, the moderate and low severity are for ID and DoS, respectively.
Such a one-to-one relationship is also almost true when correlating
the vulnerability type with the severity except that most of the DoS
vulnerabilities result in high-level severity.

Key Takeaway:Most of Android vulnerabilities are dangerous, with
81% (1,773/2,179) rated as the high severity or above. Moreover, most
of them could lead to a serious elevation of privilege and remote code
execution. These suggest that Android vulnerabilities could make
severe security impacts and require better understanding.

4.2 Analysis of Vulnerable Modules
In this subsection, we present our analysis of vulnerable modules.
We first depict the layered map of vulnerable Android modules in
Figure 5, with the percentage counted for each Android layer and
with the vulnerability number marked behind each module name.
By inspecting the vulnerability percentage of different Android
layers, we can observe that layers with modules mainly coded in
Java (i.e., the Application Framework and the System Applications
layers) have significantly fewer vulnerabilities than those mainly
coded in C/C++ at 7.25% v.s. 92.75%. In particular, the Linux Kernel
layer itself already accounts for 65.7% of all the 2,179 Android
vulnerabilities studied, and the Native Libraries layer also holds
23.9%. Both layers introduce many third-party drivers or libraries,
the code quality of which might be worse than Android’s own code.
Generally, there are more vulnerabilities in C/C++ code than Java
due to the potential memory corruption issues (e.g., buffer overflow).
This could be supported by the evidence that in our dataset of 1,349
patches, only 154 patches involve Java code while that number for
C/C++ is 1,164.

We then study the vulnerable modules across different layers and
obtain the following observations. First, the media-related modules
are the high-risk modules from the Native Libraries layer down
to the Linux Kernel, including the media framework (code in the
frameworks/av [11]), the media libraries (e.g., libstagefright
and libmpeg2), the media components in the hardware abstract
layer (e.g., hardware/qcom/media [12]), and the sound and video
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Figure 5: The layered map of vulnerable Android modules.

Table 3: The code that was frequently reported as vulnerable
in terms of appearing in at least ten vulnerabilities.

Code #
media/libstagefright/MPEG4Extractor.cpp 26
decoder/ih264d_parse_pslice.c 23
decoder/ih264d_api.c 20
decoder/ih264d_parse_slice.c 17
drivers/misc/qseecom.c 17
media/libeffects/lvm/wrapper/Bundle/EffectBundle.cpp 17
CORE/HDD/src/wlan_hdd_cfg80211.c 15
app/aboot/aboot.c 14
decoder/ihevcd_parse_headers.c 14
services/audioflinger/Effects.cpp 14
decoder/impeg2d_dec_hdr.c 13
decoder/ih264d_parse_headers.c 11
com/android/server/am/ActivityManagerService.java 11
post_proc/equalizer.c 10

drivers in the kernel. Second, the vulnerable Wi-Fi modules appear
in not only the kernel layer but also the framework and application
layers. In particular, the Wi-Fi driver and the Wi-Fi framework are
the mostly affected module in the corresponding layers, with 142
and 25 vulnerabilities, respectively. Third, the telephony-related
modules are also of high risk with 12 vulnerabilities in the appli-
cation layer, five vulnerabilities in the framework, and one vul-
nerability in the hardware abstract layer. Additionally, some other
hardware-related modules, e.g., camera, also appear in both the
native libraries and the kernel.

We further take a close look at the code that was frequently
reported as vulnerable. Table 3 lists the top one that appears in
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Figure 6: CDF plot of # patched code files per vulnerability.

at least ten vulnerabilities. We have the following observations.
First, a third of the 14 high-risk code is located in the “decoder”
directory with six pieces of frequently vulnerable code. In par-
ticular, the “ih264d” related decoder code was affected the most,
which deserves more security attention. Moreover, several media
libraries were also frequently reported, e.g., the libstagefright
and libeffects. In particular, the file MPEG4Extractor.cpp in
the libstagefright even appears in 26 patches — the riskiest
code. Besides that related to media, we find that code for WLAN
(wlan_hdd_cfg80211.c), bootloader (aboot.c), and Activity Man-
ager is also in the high-risk list. Finally, among all the listed code,
only ActivityManagerService.java is written in Java. This pro-
vides another evidence that C/C++ code in Android could be less
secure than Java code.

Key Takeaway: 92% of the Android vulnerabilities are located in
low-level modules that are mainly coded in C/C++, especially native
libraries and kernel drivers. Moreover, media, Wi-Fi, and telephony
related modules are at high risk as they introduce hundreds of vulnera-
bilities across different layers. We also study code frequently reported
as vulnerable. Overall, our analysis sheds light on susceptible Android
system modules.

4.3 Analysis of Patch Code Complexity
In this subsection, we study the complexity of patch code bymeasur-
ing the number of code changes required to fix each vulnerability.
We use all the 1,349 patches (from 1,158 unique vulnerabilities) for
analysis and draw the CDF (cumulative distribution function) plots
of their patch code complexity.

We first analyze the number of code files needs to be patched
for each vulnerability. Figure 6 shows the CDF plot of the number
of patched code files per vulnerability. We can see that over 60%
Android vulnerabilities require a code change in only one file, and
this percentage goes up to over 80% if we count the vulnerabilities
with no more than two files changed. This suggests that most of the
Android vulnerabilities are quite dedicated and involve minimal
code files to be patched. However, there are also a few vulnerabilities
requiring an exceptional number of files changed, which are due
to either system library updates or fixing common root causes in
different files. For example, CVE-2014-9675 upgrades the FreeType
library from 2.6.0 to 2.6.2, and thus adjusts a total of 112 files [2], the
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Figure 7: CDF plot of # code lines changed per vulnerability.

largest number of code files patched among all vulnerabilities. In
another instance, CVE-2017-13177 adds the push-pop instructions
in around 60 different ARM Neon 32-bit functions [3].

We further study at the granularity of code lines and draw the
CDF of the number of code lines changed per vulnerability in Fig-
ure 7. We find that half of the vulnerabilities can be fixed in fewer
than 10 lines of code, with the median being nine. Moreover, a third
of the vulnerabilities are patchable with no more than five lines,
and around one fifth require no more than two lines of changes.
In particular, 110 out of 1,158 vulnerabilities can be patched with
only one line code change. All these indicate that many Android
vulnerabilities are likely implementation bugs.

Key Takeaway: A significant portion of the Android vulnerabilities
involves non-complex patch fixes, with 60% requiring only one file
change and with 50% fixable in fewer than 10 lines of code. This
indicates that many Android issues are likely implementation bugs.

4.4 Analysis of Patch Code Patterns
In this subsection, we first give a statistical overview of our clus-
tering results to demonstrate their good quality. We then describe
and analyze clustered patch code patterns in detail.

By running our clustering algorithm over a set of 940 short
code fragments, we obtain 83 initial clusters, out of which we can
quickly filter out 50 small-size clusters as they contain only fewer
than 10 code fragments each and actually do not exhibit evident
security-oriented patterns. The remaining 33 clusters contain code
fragments ranging from 10 to 56 fragments each, with an average
of 21 fragments. We found that these clusters are in good qual-
ity, with only five clusters not exhibiting clear patterns. In other
words, 84.8% (28/33) clusters are associated with certain patterns,
with 19 clusters for security-oriented patterns and 9 clusters for
non-security-related patterns (e.g., declaring variables and using
#ifdef). Out of the 19 security-oriented clusters, we obtain a total
of 16 patterns with the majority corresponding to distinct ones.

Table 4 lists the detailed pattern results, sorted according to the
size of the clusters. As shown in the last column of detailed cluster
ID, only two clusters (cluster 21 and 1) are mapped to multiple
patterns, which indicate that we can easily abstract patterns from

each automatically generated cluster. Moreover, most of the pat-
terns correspond to only one cluster, with just five patterns merged
from multiple clusters each. In the second last column, we further
determine whether these patterns were previously known in the
literature and identify six new ones (marked with ✗). Additionally,
there are three patterns not fully covered by the literature (marked
with H#).

We now explain all the 16 patterns in details. We first analyze six
new patterns one by one, and then introduce two more Android-
specific patterns and eight traditional patterns.

P1 (new): Kernel address leakage due to %p. This vulnerabil-
ity originates from a type of security bugs exposed recently in the
Linux kernel (Kernel 4.14 and earlier), where printing kernel ad-
dresses to user space using %p can leak sensitive information about
kernel memory layout. Timely mitigation is to replace %p with %pK
to print only Zeros as address (see code example C5 in Table 4).
One year later in late 2017, a fundamental fix [5] was released by
printing only hashed addresses via %p. With the pattern %p -->
%pK, we identify a total of 28 such vulnerabilities in our entire patch
code dataset of 1,158 distinct vulnerabilities.

P2 (new):Mis-retrievingAndroid service by reference.This
vulnerability is quite specific to Android, where system processes
need to retrieve various Android system services, e.g., camera ser-
vice as shown in code C4. Android system developers previously
obtained these services by reference (i.e., sp<>&); however, such ser-
vice pointers can be cleared out by another thread or system Binder
death callback. Therefore, a safe way is to retrieve these services
by value (i.e., sp<>). In our patch code dataset, 10 vulnerabilities
suffered from this issue.

P3 (new): InconsistentAndroid Parcelable serialization.This
vulnerability is also specific to Android, where structured data shar-
ing across different processes requires serializing and deserializing
custom Parcelable objects. Inconsistency happens if data types in
writeToParcel() and readFromParcel() are not symmetric, and
an adversary could exploit such inconsistency to elevate privileges.
For example, in code C1, a long integer was written but a nor-
mal integer was read. Other data types, e.g., byte and string, could
also be misused. Moreover, different control-flow branches could
make it easier for developers to make mistakes, and therefore we
also see fixes like adding writeInt() in the else branch. Seven
inconsistent serialization bugs were identified.

P9 (new): Incomplete C++ destruction. This type of vulnera-
bilities appears in some Android media encoders, where the C++
destruction is not fully finished and some memory buffers could
still be controlled by attackers. To make the destruction more fo-
cused and clearer, a standalone onReset() is added to destruct all
relevant member variables.

P12 (new): Missing certain parameter, causing logic flaws.
Mitigating this type of vulnerabilities requires adding certain pa-
rameters and their handling logic. For example, in code C7 (CVE-
2015-3865), a new parameter called zygote was added. Code was
also added to check fir this parameter to enable debugging only
for apps forked from zygote. Detailed logic flaws in this vulnerabil-
ity pattern could be different, but they all relate to the missing of
certain parameters and the corresponding handling logic.

P14 (new): Forgetting to set certain variable const/tran-
sient.The last new pattern is about the use of const and transient



Table 4: Clustered 16 patch code patterns for Android system vulnerabilities (some examples can be referred to Table 1).

ID Description Pattern (using diff code’s essential change format) Example Known? Cluster ID
P1 Kernel address leakage due to using %p %p --> %pK C5 ✗ 73
P2 Mis-retrieving Android service by reference sp<XXXService>& --> sp<XXXService> C4 ✗ 21
P3 Inconsistent Android Parcelable serialization writeLong --> writeInt OR + writeInt(); C1 ✗ 21, 81
P4 Mis-exported component in system apps exported=‘true’ --> exported=‘false’ – ✔ [70] 21
P5 Missing or mis-setting IF check condition if [OLD_CONDITION] --> if NEW_CONDITION C9 H# [19] 63, 2
P6 Use-after-free and double free issues +/- XXX_free(); – ✔ [33] 1
P7 Missing Android permission/UID checking + checkXXXPermission()/checkCallerXXX(); – H# [60] 1
P8 Overflow due to inappropriate #define value #define INT1 --> #define INT2 C10 ✔ [19] 74
P9 Incomplete C++ destruction + virtual void onReset(); – ✗ 14
P10 Uninitialized data due to missing memset() + memset(); – ✔ [53] 50, 36
P11 Uninitialized data due to unassigned variable VARIABLE --> VARIABLE = INIT_VALUE C6 ✔ [53] 32, 4, 15
P12 Missing certain parameter, causing logic flaws --> , PARAMETER C7 ✗ 52
P13 Overflow due to missing error case checking + if (CONDITION) + { return ERROR; } – H# [19] 31
P14 Forgetting to set certain variable const/transient --> const / transient – ✗ 58
P15 Integer overflow due to inappropriate INT type uint8_t|int --> uint16|32_t|long|size_t C2, C3 ✔ [65] 7, 12
P16 Data race due to missing lock/unlock + XXX_lock(); + XXX_unlock(); – ✔ [26] 69

type qualifiers, where marking a variable const or transient can
prevent it from being modified or initialized, respectively. For ex-
ample, in CVE-2015-8967, const is needed to stop the system-call
table being modified. In CVE-2015-3837, transient is used to hide
the OpenSSLX509Certificate context variable and prevents it from
participating in the serialization process.

P4 & P7: Two more Android-specific patterns. Besides P2
and P3, pattern P4 and P7 are also Android specific. P4 is a common
vulnerability pattern in Android apps which also appears in sys-
tem apps. It mistakenly exports sensitive Android components to
other (potentially malicious) apps. On the other hand, P7 is about
missing permission or UID (i.e., app user ID) checking, and this
pattern appears in 26 vulnerabilities of our dataset, demonstrating
its pervasiveness. A prior work, Kratos [60], was designed for this
problem, but it can detect only inconsistent permission checking
and only at framework layer.

P5 & P8 & P13 & P15: Overflow-related patterns. Now we
present some traditional patterns. Hundreds of vulnerabilities in our
dataset are covered by overflow-related patterns, as in pattern P5,
P8, P13, and P15. The first three are about buffer or stack overflow,
while P15 is on integer overflow. Most of buffer overflows are due
to missing appropriate bounds checking, which could either miss
or mis-set a check condition in the IF statements (see code C9 in
pattern P5) or forget to handle a certain error branch (i.e., pattern
P13). In the case of pattern P8, the buffer itself needs to be enlarged.
Regarding integer overflow, the root cause is that inappropriate
integer types are used and the fix is to replace a smaller integer
type (e.g., uint8_t) with a larger one (e.g., uint32_t).

P10 & P11: Vulnerabilities due to uninitialized data. Unini-
tialized data is another traditional vulnerability [19], and pattern
P10 and P11 cover its two scenarios. The first scenario misses using
memset() to initialize memory buffer, and the second forgets to
assign an initial value (e.g., 0 and NULL) to a certain data variable.
These uninitialized data might be exploited to leak information
about memory layout.

P6: Use-after-free and double free issues. This type of vul-
nerabilities is due to incorrect use of memory free functions (e.g.,

osi_free() and kfree()). In some vulnerabilities, such as CVE-
2017-13257, a memory free function was placed at a location where
the data was still in use, causing an use-after-free issue. In other
cases, such as CVE-2018-9356, a memory buffer was freed two times
under a certain control-flow branch, resulting in a double free issue.

P16: Data race due to missing lock/unlock. The last tradi-
tional vulnerability pattern we clustered is about data race, where
lock/unlock functions (e.g., spin_lock/unlock() and mutex_lock/
unlock()) are not placed to prevent race conditions in a multi-
thread system such as Android.

Key Takeaway: Our clustering algorithm automatically generates
good-quality clusters of patch code fragments, with 84.8% clusters
associated with certain patterns. We thus can extract 16 vulnerability
patterns from 19 security-oriented clusters, including six new ones
not known in the literature and four specific to Android. We further
analyze the characteristics of these patterns via case studies.

4.5 Implications of Our Analysis Results
In this subsection, we further discuss four implications of our anal-
ysis results presented earlier.

Implication 1: Our analysis quantitatively points out the seri-
ousness of system-level vulnerabilities in Android. By analyzing the
severity of all 2,179 vulnerabilities in §4.1, we found that 81% of
them are rated as high or critical severity. This suggests that de-
tecting system-level issues is equally, if not more, important than
app-level vulnerabilities. Indeed, a considerable portion of Android
malware in the wild leveraged system vulnerabilities for root ex-
ploits [32, 55, 78]. Therefore, it is especially important for security
researchers to detect and patch zero-day Android vulnerabilities
ahead of hackers.

Implication 2: The results of vulnerable modules can help system
developers avoid making similar mistakes in the same module or code.
This is a further usage of our vulnerable module results beyond
the statistical data presented in §4.2. Specifically, when an Android
system developer or a third-party ROM maker starts to work on a
particular Android module, he/she can first go through previously



reported vulnerable code examples in the same module. In particu-
lar, our module results contain detailed code file paths (e.g., Table 3
in §4.2) and their associated patches. To help developers easily re-
trieve such information, we are on the way of implementing a web
portal to make our results browsable and searchable.

Implication 3: Since implementation bugs are an important source
of Android system vulnerabilities, it is necessary for future defense
systems to adopt them into threat models. Existing research efforts on
securing Android OS have proposed mandatory access control (e.g.,
SEAndroid [62] and ASM [36]) and information flow control (e.g.,
Weir [56] and Aquifer [57]). These defense systems typically assume
no implementation vulnerabilities in Android platform components.
For example, SEAndroid [62] admits that it cannot mitigate kernel
vulnerabilities or address threats from other platform components,
while Weir [56] explicitly includes Android OS as its trusted com-
puting base. However, as revealed by our analysis of patch code
complexity in §4.3, a significant portion of Android vulnerabilities
are likely implementation bugs. These implementation weaknesses
could then turn down an originally secure system design.

Implication 4: Our patch code patterns can be leveraged for au-
tomatic vulnerability detection using program analysis techniques.
A key problem in using static program analysis for vulnerability
detection is to determine patterns, and our analysis in §4.4 can serve
for this purpose. Specifically, extracted vulnerability patterns can be
utilized in two ways. First, some patterns are context-independent
(e.g., P1 and P2) or can be tracked using data/control flows (e.g., P3,
P6, P10, P11, and P15), and thus can be directly inputted to a static
analysis tool. For other patterns that are fully related to program
contexts, learning-based methods (e.g., VulDeePecker [51]) can be
further employed to distinguish different contexts.

5 RELATEDWORK
In this section, we present the research related to Android system
vulnerabilities, vulnerability report analysis, and similar or cloned
code detection.

Research on Android system vulnerabilities. While most
prior work was concerned about app-level vulnerabilities (e.g., [22,
24, 25, 27, 30, 34, 42, 48, 54, 58, 66–69, 72, 79, 80]), there are some
recent studies specialized for Android system vulnerability detec-
tion. Notably, ADDICTED [77] made a first attempt in analyzing
the (in)security of Android device drivers and they found that a
large number of device drivers customized by vendors are under-
protected with downgraded permissions. Following this direction,
several studies of mobile device drivers were further performed, on
a new dynamic analysis [63], on the ION driver insecurity [74], and
on an Android-specific kernel driver called Binder [18, 28]. Com-
pared to drivers, Android framework received more security re-
search. For example, Kratos [60], Kywe et al. [46], Gu et al. [35], Ace-
Droid [16], and ACMiner [38] discovered inconsistent security pol-
icy enforcement in the Android framework, while ASVHunter [37]
and KMHunter [64] examined denial-of-service attack issues. Dif-
ferent from these studies on detecting unknown vulnerability in-
stances, we aim to obtain insights from reported vulnerabilities.

Analysis of vulnerability reports. Our paper belongs to the
general research category of analyzing vulnerability reports. The
most related are two works [41, 52] that also analyzed Android

vulnerability reports. Compared with our large-scale study via an
automatic analysis framework, these two studies relied on signif-
icant manual efforts and used only a small set of vulnerabilities
for analysis. Moreover, they did not present in-depth analysis, e.g.,
clustering patch code patterns as we did in this paper.

In the research of other vulnerability reports, Chen et al. [20]
made a pioneer work on using a finite-state machine (FSM) to model
and analyze memory corruption vulnerabilities in 2006. In 2011,
Chen et al. [19] performed a high-impact study on analyzing 141
Linux kernel vulnerability reports. In 2017, Li and Paxson [47] con-
ducted a generic measurement study of all kinds of security patches.
There were also some studies surveying vulnerability reports as part
of their research. For example, UniSan [53] surveyed the root causes
of kernel information leaks reported after 2013, and InstaGuard [21]
measured the patch delays of 12 vulnerabilities in Android system
programs and also evaluated their patch solution in 30 selected
Android vulnerabilities. Furthermore, a recent work, SemFuzz [73],
leveraged vulnerability-related text from CVE reports and Linux
git logs to guide automatic generation of proof-of-concept exploits.

Detection of similar or cloned codes. Code clone detection
is a long-lasting problem in the software engineering and security
areas. Back to 1998, Baxter et. al. [17] had proposed to use abstract
syntax tree (AST) for clone detection. To improve the scalability,
CCFinder [43], CP-Miner [49], and ReDeBug [39] splitted code into
token sequences for a multilinguistic clone detection in large-scale
source code, while Deckard [40] computed characteristic vectors
for approximating ASTs and thus can cluster similar vectors only.
VulPecker [50] and VUDDY [44] further abstracted vulnerability-
related features specifically for vulnerable code clone detection.
More recently, deep learning is also exploited for clone detection
in source code [51] and binary code [71]. However, these clone
detection works are not designed for finding similar code “changes”,
thus not suitable for our patch code clustering problem. Only two
recent works, Kreutzer et al. [45] and Paletov et al. [59], also worked
on clustering code changes. Our clustering algorithm differs these
two by extracting patch code’s essential changes and leveraging
affinity propagation for automatic clustering without assuming any
pattern template or structure.

6 CONCLUSION
In this paper, we conducted the first systematic study of Android
system vulnerabilities by comprehensively analyzing all 2,179 vul-
nerabilities and their 1,349 publicly available patches on theAndroid
Security Bulletin program over around three years. To support such
analysis, we proposed an automatic analysis framework and its
three analyzers for the analysis of vulnerable modules, patch code
complexity, and vulnerability patterns. In particular, we designed
a similarity-based algorithm that extracts patch code’s essential
changes and leverages affinity propagation to automatically cluster
patch code patterns. With this analysis framework, we pinpointed
the distribution of vulnerabilities in different Android modules,
studied the complexity of Android patch code, and successfully
obtained 16 vulnerability patterns that include six new ones not
known in the literature. In the future, we plan to further improve
our clustering algorithm by supporting long code fragments, and
also evolve our analysis results over time.
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