2,446 research outputs found

    Understanding How EdD Students View Educational Research: A Qualitative Study Using Domain, Taxonomic, Componential and Text Mining Analysis

    Get PDF
    The purpose of this qualitative study is to explore how EdD students initially view educational research and themselves as researchers before taking their first required research course. This study used four types of qualitative data analysis methods: domain, taxonomic, componential, and text mining. The findings suggest that the EdD students are able to identity several attributes of research, but there is a dissonance on the attributes aligned with upper academic research. The students understand the importance of research to educational practices, but do not have sufficient understanding about research methods and methodologies. Their views of what research is are formal but their views on who does research is informal. Recommendations for EdD research course designs are offered

    ECSTM Studies of the Electrocatalyst Stability for the AAEM Fuel Cell

    Get PDF
    poster abstractAlkaline fuel cells (AFC) have come to the forefront of fuel cell research due to the friendlier environment they provide to the cell’s components in comparison to acid-based Proton Exchange Membrane (PEM) fuel cells. The AFC shows real world application of 60% efficiency, but suffers from long term degradation due to the formation of carbonate precipitates formed from carbon dioxide. A solid-state form of the AFC, the alkaline anion exchange membrane (AAEM) fuel cell, is under development to overcome the degradation, due to the usage of liquid potassium hydroxide (KOH) or sodium hydroxide (NaOH) electrolytes in the AFC. Also, the AFC are known to have a higher rate of contamination and therefore need higher purity fuel than their acidic counterparts. This problem is eliminated by the AAEM fuel cell. The cathode, which consists of the catalyst, ionomer and current supports in the AAEM fuel cell or the AFC, is the key component that determines the cell’s performance and stability. The material found to work best for the AAEM fuel cell is platinum (Pt). The issue with Pt as a catalyst material for these fuel cells is that is it very cost prohibitive for mass production. Therefore, other metals are being investigated to find a material with less cost, but perform as well as the Pt in AAEM fuel cells. Several theories have been proposed as to the cause of cathode degradation. It was found that an increase in current density, temperature and ligand (OH-) concentration accelerated corrosion of catalysts and carbon supports. Studies have been done on the catalyst material of Pt, as well as the highly oriented pytolytic graphite (HOPG). HOPG is a carbon-based material that Pt is deposited upon. So far, most of these studies were done in acid media. The objective of this work is to develop an in situ electrochemical scanning tunneling microcopy (ECSTM) method for characterizing stability of nano-Pt and HOPG substrate under operation conditions of an AFC. Future research will characterize the stability of other metal nanostructure in an attempt to find cheaper and effective alternatives to Platinum

    Policy Poisoning in Batch Learning for Linear Quadratic Control Systems via State Manipulation

    Full text link
    In this work, we study policy poisoning through state manipulation, also known as sensor spoofing, and focus specifically on the case of an agent forming a control policy through batch learning in a linear-quadratic (LQ) system. In this scenario, an attacker aims to trick the learner into implementing a targeted malicious policy by manipulating the batch data before the agent begins its learning process. An attack model is crafted to carry out the poisoning strategically, with the goal of modifying the batch data as little as possible to avoid detection by the learner. We establish an optimization framework to guide the design of such policy poisoning attacks. The presence of bi-linear constraints in the optimization problem requires the design of a computationally efficient algorithm to obtain a solution. Therefore, we develop an iterative scheme based on the Alternating Direction Method of Multipliers (ADMM) which is able to return solutions that are approximately optimal. Several case studies are used to demonstrate the effectiveness of the algorithm in carrying out the sensor-based attack on the batch-learning agent in LQ control systems.Comment: First appeared at CISS 202

    International Legal Updates

    Get PDF

    Genomic profiling of malignant peritoneal mesothelioma reveals recurrent alterations in epigenetic regulatory genes BAP1, SETD2, and DDX3X.

    Get PDF
    Malignant mesothelioma is a rare cancer that arises from the mesothelial cells that line the pleural cavity and less commonly from the peritoneal lining of the abdomen and pelvis. Most pleural mesotheliomas arise in patients with a history of asbestos exposure, whereas the association of peritoneal mesotheliomas with exposure to asbestos and other potential carcinogens is less clear, suggesting that the genetic alterations that drive malignant peritoneal mesothelioma may be unique from those in pleural mesothelioma. Treatment options for all malignant mesotheliomas are currently limited, with no known targeted therapies available. To better understand the molecular pathogenesis of malignant peritoneal mesothelioma, we sequenced 510 cancer-related genes in 13 patients with malignant mesothelioma arising in the peritoneal cavity. The most frequent genetic alteration was biallelic inactivation of the BAP1 gene, which occurred in 9/13 cases, with an additional two cases demonstrating monoallelic loss of BAP1. All 11 of these cases demonstrated loss of BAP1 nuclear staining by immunohistochemistry, whereas two tumors without BAP1 alteration and all 42 cases of histologic mimics in peritoneum (8 multilocular peritoneal inclusion cyst, 6 well-differentiated papillary mesothelioma of the peritoneum, 16 adenomatoid tumor, and 12 low-grade serous carcinoma of the ovary) demonstrated intact BAP1 nuclear staining. Additional recurrently mutated genes in this cohort of malignant peritoneal mesotheliomas included NF2 (3/13), SETD2 (2/13), and DDX3X (2/13). While these genes are known to be recurrently mutated in pleural mesotheliomas, the frequencies are distinct in peritoneal mesotheliomas, with nearly 85% of peritoneal tumors harboring BAP1 alterations versus only 20-30% of pleural tumors. Together, these findings demonstrate the importance of epigenetic modifiers including BAP1, SETD2, and DDX3X in mesothelial tumorigenesis and suggest opportunities for targeted therapies

    International Legal Updates

    Get PDF

    Depositing catalyst layers in polymer electrolyte membrane fuel cells : a review

    Get PDF
    Fuel cell technology continues to advance and offers to be a potentially promising solution to many energy needs. Of particular interest are manufacturing techniques to improve performance and decrease overall cost. For catalyst deposition on the membrane electrode assembly (MEA), there are a number of techniques that have been used in the past decades. This paper aims to review many of these main techniques that have been published to show the wide variety of catalyst deposition methods

    International Legal Updates

    Get PDF
    • …
    corecore