27 research outputs found

    Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    Get PDF
    This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP) and heart rate variability (HRV). The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25 ± 4 yr; 29 men and 31 women) were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF) and high-frequency (HF) components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr) (P < .05), but the cold stress significantly increased AIr (P < .01). The spectral energy of RPP did not show any statistical difference in 0 ~ 10 Hz region under both conditions, but in the region of 10 ~ 50 Hz, there was a significant increase (P < .01) in the heat test and a significant decrease in the cold test (P < .01). The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10 ~ 50 Hz (SE10−50 Hz) but not in the region of 0 ~ 10 Hz (SE0−10 Hz). The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses

    Evaluation of Performance and Uncertainty of Infrared Tympanic Thermometers

    Get PDF
    Infrared tympanic thermometers (ITTs) are easy to use and have a quick response time. They are widely used for temperature measurement of the human body. The accuracy and uncertainty of measurement is the importance performance indicator for these meters. The performance of two infrared tympanic thermometers, Braun THT-3020 and OMRON MC-510, were evaluated in this study. The cell of a temperature calibrator was modified to serve as the standard temperature of the blackbody. The errors of measurement for the two meters were reduced by the calibration equation. The predictive values could meet the requirements of the ASTM standard. The sources of uncertainty include the standard deviations of replication at fixed temperature or the predicted values of calibration equation, reference standard values and resolution. The uncertainty analysis shows that the uncertainty of calibration equation is the main source for combined uncertainty. Ambient temperature did not have the significant effects on the measured performance. The calibration equations could improve the accuracy of ITTs. However, these equations did not improve the uncertainty of ITTs

    Performance Evaluation of an Infrared Thermocouple

    Get PDF
    The measurement of the leaf temperature of forests or agricultural plants is an important technique for the monitoring of the physiological state of crops. The infrared thermometer is a convenient device due to its fast response and nondestructive measurement technique. Nowadays, a novel infrared thermocouple, developed with the same measurement principle of the infrared thermometer but using a different detector, has been commercialized for non-contact temperature measurement. The performances of two-kinds of infrared thermocouples were evaluated in this study. The standard temperature was maintained by a temperature calibrator and a special black cavity device. The results indicated that both types of infrared thermocouples had good precision. The error distribution ranged from −1.8 °C to 18 °C as the reading values served as the true values. Within the range from 13 °C to 37 °C, the adequate calibration equations were the high-order polynomial equations. Within the narrower range from 20 °C to 35 °C, the adequate equation was a linear equation for one sensor and a two-order polynomial equation for the other sensor. The accuracy of the two kinds of infrared thermocouple was improved by nearly 0.4 °C with the calibration equations. These devices could serve as mobile monitoring tools for in situ and real time routine estimation of leaf temperatures

    Validation of the Component Model for Prediction of Moisture Sorption Isotherms of Two Herbs and other Products

    No full text
    Sorption isotherm is an essential property for the processing of biological materials. In this study, a component model for the prediction of the sorption isotherm was evaluated. In order to validate this component model, the moisture sorption isotherms for Chrysanthemum morifolium flowers and the orchid Anoectochilus formosanus Hayata were determined. The sorption isotherm was measured by using the equilibrium relative humidity technique for five temperatures. Seven sorption isotherm models were selected with four quantitative criteria and residual plots to evaluate fitting ability and prediction performance for these products. The results indicated that the sorption temperature did not significantly affect the adsorption isotherm. The Caurie and Henderson equations could be used for C. morifolium flowers and A. formosanus Hayata. The isotherm data of raw bamboo, elecampe and three varieties of corn kernels from the literature were adopted to validate the component model. Comparing with the predicted values of component values and actual isotherm moisture, the component model has good predictive ability at the aw range smaller than 0.7. Considering the practical application, the aw range below 0.7 is the main range for the processing of agricultural products, and the predictive values of this component model could be helpful for food engineering and for the food industry

    Evaluation of the Effect of Temperature on a Stem Elongation Model of Phalaenopsis

    No full text
    Phalaenopsis orchid has become one of the most important potted plants in flower markets. However, the timing at which flowers reach the saleable stage can be very important since the demand may be larger for specific holidays. The regulation of stem growth could serve as an opportunity for regulation of flowering. The purpose of this study was to evaluate the effect of temperature on stem elongation. In this study, a stem elongation model established by a statistical technique was used to evaluate the effect of temperature. The stem lengths of four named Phalaenopsi varieties and 15 unnamed Phalaenopsi hybrids were measured under different temperature regimes. The three parameters of the logistic growth model, the maximum stem length, growth rate, and inflection point at which the growth rate reached a maximum value were estimated by using nonlinear regression analysis. Then, the differences among varieties in these three parameters were assessed by categorical testing. The results of this study indicated that stem growth rate was positively affected only by day temperature. The maximum stem length was negatively affected by the day temperature and positively influenced by the temperature difference between day and night. The results of this study could provide a practical method to regulate stem elongation by adjusting the temperatures, thus helping growers time the flowering of their potted orchids to meet market demand

    Uncertainty Analysis in Humidity Measurements by the Psychrometer Method

    No full text
    The most common and cheap indirect technique to measure relative humidity is by using psychrometer based on a dry and a wet temperature sensor. In this study, the measurement uncertainty of relative humidity was evaluated by this indirect method with some empirical equations for calculating relative humidity. Among the six equations tested, the Penman equation had the best predictive ability for the dry bulb temperature range of 15–50 °C. At a fixed dry bulb temperature, an increase in the wet bulb depression increased the error. A new equation for the psychrometer constant was established by regression analysis. This equation can be computed by using a calculator. The average predictive error of relative humidity was &lt;0.1% by this new equation. The measurement uncertainty of the relative humidity affected by the accuracy of dry and wet bulb temperature and the numeric values of measurement uncertainty were evaluated for various conditions. The uncertainty of wet bulb temperature was the main factor on the RH measurement uncertainty

    Evaluation of Piecewise Polynomial Equations for Two Types of Thermocouples

    Get PDF
    Thermocouples are the most frequently used sensors for temperature measurement because of their wide applicability, long-term stability and high reliability. However, one of the major utilization problems is the linearization of the transfer relation between temperature and output voltage of thermocouples. The linear calibration equation and its modules could be improved by using regression analysis to help solve this problem. In this study, two types of thermocouple and five temperature ranges were selected to evaluate the fitting agreement of different-order polynomial equations. Two quantitative criteria, the average of the absolute error values |e|ave and the standard deviation of calibration equation estd, were used to evaluate the accuracy and precision of these calibrations equations. The optimal order of polynomial equations differed with the temperature range. The accuracy and precision of the calibration equation could be improved significantly with an adequate higher degree polynomial equation. The technique could be applied with hardware modules to serve as an intelligent sensor for temperature measurement

    Relationship between Water Activity and Moisture Content in Floral Honey

    No full text
    The water activity (Aw) and moisture content (MC) data of floral honey at five temperatures were determined using the Aw method and it was found that temperature significantly affected the Aw/MC data. The linear equation could be used to express the relationship between Aw and MC of honeys. The empirical regression equations between parameters and temperature were established. To evaluate the factors affecting the Aw/MC data, we used categorical tests of regression analysis to assess the effect of the correlation between Aw and MC of honey and examined the factors affecting the regression parameters. Six datasets from five countries were selected from the literature. The significance of the levels of qualitative categories was tested by t-test. The slope of the relationship between Aw and MC was affected by the state of honey (liquid and crystallized). The intercepts were significantly affected by honey type (flower or honeydew), harvesting year, geographical collection site, botanical source and other factors. The outliers in the datasets significantly affected the results. With modern regression analysis, useful information on the correlation between Aw and MC could be found. The results indicated that no universal linear equation for Aw and MC could be used. The Aw value could be used as a criterion for the honey industry; then, the MC of honey could be calculated by the specific linear equation between Aw and MC

    Determining the Leaf Emissivity of Three Crops by Infrared Thermometry

    No full text
    Plant temperature can provide important physiological information for crop management. Non-contact measurement with an infrared thermometer is useful for detecting leaf temperatures. In this study, a novel technique was developed to measure leaf emissivity using an infrared thermometer with an infrared sensor and a thermocouple wire. The measured values were transformed into true temperatures by calibration equations to improve the measurement accuracy. The relationship between two kinds of measurement temperatures and setting emissivities was derived as a model for calculating of true emissivity. The emissivities of leaves of three crops were calculated by the mathematical equation developed in this study. The mean emissivities were 0.9809, 0.9783, 0.981 and 0.9848 for Phalaenopsis mature and new leaves and Paphiopedilum and Malabar chestnut leaves, respectively. Emissivity differed significantly between leaves of Malabar chestnut and the two orchids. The range of emissivities determined in this study was similar to that in the literature. The precision of the measurement is acceptable. The method developed in this study is a real-time, in situ technique and could be used for agricultural and forestry plants

    Evaluation of Calibration Equations by Using Regression Analysis: An Example of Chemical Analysis

    No full text
    A calibration curve is used to express the relationship between the response of the measuring technique and the standard concentration of the target analyst. The calibration equation verifies the response of a chemical instrument to the known properties of materials and is established using regression analysis. An adequate calibration equation ensures the performance of these instruments. Most studies use linear and polynomial equations. This study uses data sets from previous studies. Four types of calibration equations are proposed: linear, higher-order polynomial, exponential rise to maximum and power equations. A constant variance test was performed to assess the suitability of calibration equations for this dataset. Suspected outliers in the data sets are verified. The standard error of the estimate errors, s, was used as criteria to determine the fitting performance. The Prediction Sum of Squares (PRESS) statistic is used to compare the prediction ability. Residual plots are used as quantitative criteria. Suspected outliers in the data sets are checked. The results of this study show that linear and higher order polynomial equations do not allow accurate calibration equations for many data sets. Nonlinear equations are suited to most of the data sets. Different forms of calibration equations are proposed. The logarithmic transformation of the response is used to stabilize non-constant variance in the response data. When outliers are removed, this calibration equation&rsquo;s fit and prediction ability is significantly increased. The adequate calibration equations with the data sets obtained with the same equipment and laboratory indicated that the adequate calibration equations differed. No universe calibration equation could be found for these data sets. The method for this study can be used for other chemical instruments to establish an adequate calibration equation and ensure the best performance
    corecore