1,194 research outputs found
Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene
In this paper, we evaluate of the adsorption/ desorption of ammonia molecules
on a graphene surface by studying the Fermi level shift. Based on a physically
plausible model, the adsorption and desorption rates of ammonia molecules on
graphene have been extracted from the measured Fermi level shift as a function
of exposure time. An electric field-induced flipping behavior of ammonia
molecules on graphene is suggested, based on field effect transistor (FET)
measurements
CRISPR as a Driving Force: The Model T of Biotechnology
The CRISPR system for gene editing can break, repair, and replace targeted sections of DNA. Although CRISPR gene editing has important therapeutic potential, it raises several ethical concerns. Some bioethicists worry CRISPR is a prelude to a dystopian future, while others maintain it should not be feared because it is analogous to past biotechnologies. In the scientific literature, CRISPR is often discussed as a revolutionary technology. In this paper we unpack the framing of CRISPR as a revolutionary technology and contrast it with framing it as a value-threatening biotechnology or business-as-usual. By drawing on a comparison between CRISPR and the Ford Model T, we argue CRISPR is revolutionary as a product, process, and as a force for social change. This characterization of CRISPR offers important conceptual clarity to the existing debates surrounding CRISPR. In particular, conceptualizing CRISPR as a revolutionary technology structures regulatory goals with respect to this new technology. Revolutionary technologies have characteristic patterns of implementation, entrenchment, and social impact. As such, early identification of technologies as revolutionary may help construct more nuanced and effective ethical frameworks for public policy
Characterizing object- and position-dependent response profiles to uni- and bilateral stimulus configurations in human higher visual cortex:a 7T fMRI study
Visual scenes are initially processed via segregated neural pathways dedicated to either of the two visual hemifields. Although higher-order visual areas are generally believed to utilize invariant object representations (abstracted away from features such as stimulus position), recent findings suggest they retain more spatial information than previously thought. Here, we assessed the nature of such higher-order object representations in human cortex using high-resolution fMRI at 7T, supported by corroborative 3T data. We show that multi-voxel activation patterns in both the contra- and ipsilateral hemisphere can be exploited to successfully classify the object category of unilaterally presented stimuli. Moreover, robustly identified rank order-based response profiles demonstrated a strong contralateral bias which frequently outweighed object category preferences. Finally, we contrasted different combinatorial operations to predict the responses during bilateral stimulation conditions based on responses to their constituent unilateral elements. Results favored a max operation predominantly reflecting the contralateral stimuli. The current findings extend previous work by showing that configuration-dependent modulations in higher-order visual cortex responses as observed in single unit activity have a counterpart in human neural population coding. They furthermore corroborate the emerging view that position coding is a fundamental functional characteristic of ventral visual stream processing
Phase diagram of QCD with four quark flavors at finite temperature and baryon density
We analyze the phase diagram of QCD with four staggered flavors in the (mu,
T) plane using a method recently proposed by us. We explore the region T > 0.7
Tc and mu <1.4 Tc, where Tc is the transition temperature at zero baryon
density, and find a first order transition line. Our results are quantitatively
compatible with those obtained with the imaginary chemical potential approach
and the double reweighting method, in the region where these approaches are
reliable, T > 0.9 Tc and mu < Tc. But, in addition, our method allows us to
extend the transition line to lower temperatures and higher chemical
potentials.Comment: 14 pages, 8 figures. Comments and new data added. Version to be
published in Nuclear Physics
Kinetic energy driven superconductivity in doped cuprates
Within the t-J model, the mechanism of superconductivity in doped cuprates is
studied based on the partial charge-spin separation fermion-spin theory. It is
shown that dressed holons interact occurring directly through the kinetic
energy by exchanging dressed spinon excitations, leading to a net attractive
force between dressed holons, then the electron Cooper pairs originating from
the dressed holon pairing state are due to the charge-spin recombination, and
their condensation reveals the superconducting ground-state. The electron
superconducting transition temperature is determined by the dressed holon pair
transition temperature, and is proportional to the concentration of doped holes
in the underdoped regime. With the common form of the electron Cooper pair, we
also show that there is a coexistence of the electron Cooper pair and
antiferromagnetic short-range correlation, and hence the antiferromagnetic
short-range fluctuation can persist into the superconducting state. Our results
are qualitatively consistent with experiments.Comment: 6 pages, Revtex, two figures are included, corrected typo
- …