2,049 research outputs found
Prospective Investigation of Pesticide Applicators' Health (PIPAH) study: a cohort study of professional pesticide users in Great Britain
PURPOSE: The purpose of the study is to monitor the exposure and health of workers in Great Britain who use pesticides as a part of their job, and to gain a better understanding of the relationship between long-term exposure to pesticides and health. PARTICIPANTS: Study participants are professional pesticide users who are certified in the safe use of pesticides or who were born before 1965 and apply pesticides under 'grandfather rights'. Overall response rate was 20%; participants are mostly male (98%) and the average age is 54 years, ranging from 17 to over 80 years. FINDINGS TO DATE: Participants have completed a baseline general questionnaire and three follow-up questionnaires on the use of pesticides. These data will enable investigations into the relationship between occupational pesticide exposure and health outcomes taking into account non-occupational confounding factors. FUTURE PLANS: There is no set end date for data collection. Recruitment into the cohort will continue, and for the foreseeable future there will be annual pesticide use questionnaires and five yearly follow-up general questionnaires.The intention is to validate the pesticide use questionnaire, and to develop a crop/job exposure matrix (C/JEM) which can be updated regularly. This C/JEM will be able to look at general categories of pesticide, such as insecticides, structurally related pesticides, such as organochlorines, or individual active ingredients. Data collected on use of personal protective equipment and method of application will provide information on how potential exposure to pesticide during application may have been modified. The study will be able to estimate changes in individual pesticide use over time, and to examine the associations between pesticide use and both baseline and long-term health outcomes.The cohort members will be linked to national databases for notification of hospital episode statistics, cancer incidence and mortality for follow-up of health outcomes
Ultrasoft Renormalization in Non-Relativistic QCD
For Non-Relativistic QCD the velocity renormalization group correlates the
renormalization scales for ultrasoft, potential and soft degrees of freedom.
Here we discuss the renormalization of operators by ultrasoft gluons. We show
that renormalization of soft vertices can induce new operators, and also
present a procedure for correctly subtracting divergences in mixed
potential-ultrasoft graphs. Our results affect the running of the
spin-independent potentials in QCD. The change for the NNLL t-tbar cross
section near threshold is very small, being at the 1% level and essentially
independent of the energy. We also discuss implications for analyzing
situations where mv^2 ~ Lambda_QCD.Comment: 31 pages, 11 fig
Goos-H\"{a}nchen-like shifts for Dirac fermions in monolayer graphene barrier
We investigate the Goos-H\"{a}nchen-like shifts for Dirac fermions in
transmission through a monolayer graphene barrier. The lateral shifts, as the
functions of the barrier's width and the incidence angle, can be negative and
positive in Klein tunneling and classical motion, respectively. Due to their
relations to the transmission gap, the lateral shifts can be enhanced by the
transmission resonances when the incidence angle is less than the critical
angle for total reflection, while their magnitudes become only the order of
Fermi wavelength when the incidence angle is larger than the critical angle.
These tunable beam shifts can also be modulated by the height of potential
barrier and the induced gap, which gives rise to the applications in
graphene-based devices.Comment: 5 pages, 5 figure
An integrated approach to modelling the fluid-structure interaction of a collapsible tube
The well known collapsible tube experiment was conducted to obtain flow, pressure and materials property data for steady state conditions. These were then used as the boundary conditions for a fully coupled fluid-structure interaction (FSI) model using a propriety computer code, LS-DYNA. The shape profiles for the tube were also recorded. In order to obtain similar collapse modes to the experiment, it was necessary to model the tube flat, and then inflate it into a circular profile, leaving residual stresses in the walls. The profile shape then agreed well with the experimental ones. Two departures from the physical properties were required to reduce computer time to an acceptable level. One of these was the lowering of the speed of sound by two orders of magnitude which, due to the low velocities involved, still left the mach number below 0.2. The other was to increase the thickness of the tube to prevent the numerical collapse of elements. A compensation for this was made by lowering the Young's modulus for the tube material. Overall the results are qualitatively good. They give an indication of the power of the current FSI algorithms and the need to combine experiment and computer models in order to maximise the information that can be extracted both in terms of quantity and quality
Critical Currents of Ideal Quantum Hall Superfluids
Filling factor bilayer electron systems in the quantum Hall regime
have an excitonic-condensate superfluid ground state when the layer separation
is less than a critical value . On a quantum Hall plateau current
injected and removed through one of the two layers drives a dissipationless
edge current that carries parallel currents, and a dissipationless bulk
supercurrent that carries opposing currents in the two layers. In this paper we
discuss the theory of finite supercurrent bilayer states, both in the presence
and in the absence of symmetry breaking inter-layer hybridization. Solutions to
the microscopic mean-field equations exist at all condensate phase winding
rates for zero and sufficiently weak hybridization strengths. We find, however,
that collective instabilities occur when the supercurrent exceeds a critical
value determined primarily by a competition between direct and exchange
inter-layer Coulomb interactions. The critical current is estimated using a
local stability criterion and varies as when approaches
from below. For large inter-layer hybridization, we find that the
critical current is limited by a soliton instability of microscopic origin.Comment: 18 RevTeX pgs, 21 eps figure
The QCD heavy-quark potential to order v^2: one loop matching conditions
The one-loop QCD heavy quark potential is computed to order v^2 in the color
singlet and octet channels. Several errors in the previous literature are
corrected. To be consistent with the velocity power counting, the full
dependence on |p' + p|/|p' - p| is kept. The matching conditions for the NRQCD
one-loop potential are computed by comparing the QCD calculation with that in
the effective theory. The graphs in the effective theory are also compared to
terms from the hard, soft, potential, and ultrasoft regimes in the threshold
expansion. The issue of off-shell versus on-shell matching and gauge dependence
is discussed in detail for the 1/(m k) term in the potential. Matching on-shell
gives a 1/(m k) potential that is gauge independent and does not vanish for
QED.Comment: 28 pages, References added and minor changes to section III, results
unchange
Electromagnetic properties of graphene junctions
A resonant chiral tunneling (CT) across a graphene junction (GJ) induced by
an external electromagnetic field (EF) is studied. Modulation of the electron
and hole wavefunction phases by the external EF during the CT
processes strongly impacts the CT directional diagram. Therefore the a.c.
transport characteristics of GJs depend on the EF polarization and frequency
considerably. The GJ shows great promises for various nanoelectronic
applications working in the THz diapason.Comment: 4 pages 3 figure
New exact solution of Dirac-Coulomb equation with exact boundary condition
It usually writes the boundary condition of the wave equation in the Coulomb
field as a rough form without considering the size of the atomic nucleus. The
rough expression brings on that the solutions of the Klein-Gordon equation and
the Dirac equation with the Coulomb potential are divergent at the origin of
the coordinates, also the virtual energies, when the nuclear charges number Z >
137, meaning the original solutions do not satisfy the conditions for
determining solution. Any divergences of the wave functions also imply that the
probability density of the meson or the electron would rapidly increase when
they are closing to the atomic nucleus. What it predicts is not a truth that
the atom in ground state would rapidly collapse to the neutron-like. We
consider that the atomic nucleus has definite radius and write the exact
boundary condition for the hydrogen and hydrogen-like atom, then newly solve
the radial Dirac-Coulomb equation and obtain a new exact solution without any
mathematical and physical difficulties. Unexpectedly, the K value constructed
by Dirac is naturally written in the barrier width or the equivalent radius of
the atomic nucleus in solving the Dirac equation with the exact boundary
condition, and it is independent of the quantum energy. Without any divergent
wave function and the virtual energies, we obtain a new formula of the energy
levels that is different from the Dirac formula of the energy levels in the
Coulomb field.Comment: 12 pages,no figure
Negatively Charged Excitons and Photoluminescence in Asymmetric Quantum Well
We study photoluminescence (PL) of charged excitons () in narrow
asymmetric quantum wells in high magnetic fields B. The binding of all
states strongly depends on the separation of electron and hole layers.
The most sensitive is the ``bright'' singlet, whose binding energy decreases
quickly with increasing even at relatively small B. As a result, the
value of B at which the singlet--triplet crossing occurs in the spectrum
also depends on and decreases from 35 T in a symmetric 10 nm GaAs well
to 16 T for nm. Since the critical values of at which
different states unbind are surprisingly small compared to the well
width, the observation of strongly bound states in an experimental PL
spectrum implies virtually no layer displacement in the sample. This casts
doubt on the interpretation of PL spectra of heterojunctions in terms of
recombination
Cronin Effect and High-p_T Suppression in pA Collisions
We review the predictions of the theory of Color Glass Condensate for gluon
production cross section in p(d)A collisions. We demonstrate that at moderate
energies, when the gluon production cross section can be calculated in the
framework of McLerran-Venugopalan model, it has only partonic level Cronin
effect in it. At higher energies/rapidities corresponding to smaller values of
Bjorken x quantum evolution becomes important. The effect of quantum evolution
at higher energies/rapidities is to introduce suppression of high-p_T gluons
slightly decreasing the Cronin enhancement. At still higher energies/rapidities
quantum evolution leads to suppression of produced gluons at all values of p_T.Comment: 32 pages, 8 figures, v2: extended and improved discussion, references
adde
- …