764 research outputs found
Macroscopically ordered state in exciton system
Macroscopically ordered arrays of vortices in quantum liquids, such as
superconductors, He-II, and atom Bose-Einstein Condensates (BEC), demonstrate
macroscopic coherence in flowing superfluids [1-4]. Despite of the rich variety
of systems where quantum liquids reveal macroscopic ordering, experimental
observation of a macroscopically ordered electronic state in semiconductors has
remained a challenging unexplored problem. A system of excitons is a promising
candidate for the realization of macroscopic ordering in a quantum liquid in
semiconductors. An exciton is a bound pair of an electron and a hole. At low
densities, it is a Bose quasi-particle. At low temperatures, of the order of a
few Kelvins, excitons can form a quantum liquid, i.e., a statistically
degenerate Bose gas and eventually BEC [5-9]. Here, we report the experimental
observation of a macroscopically ordered state in an exciton system.Comment: 5 pages (2 col) including 4 figure
Charge transport and phase transition in exciton rings
The macroscopic exciton rings observed in the photoluminescence (PL) patterns
of excitons in coupled quantum wells (CQWs) are explained by a series of
experiments and a theory based on the idea of carrier imbalance, transport and
recombination. The rings are found to be a source of cold excitons with
temperature close to that of the lattice. We explored states of excitons in the
ring over a range of temperatures down to 380 mK. These studies reveal a sharp,
albeit continuous, second order phase transition to a low-temperature ordered
exciton state, characterized by ring fragmentation into a periodic array of
aggregates. An instability at the onset of degeneracy in the cold exciton
system, due to stimulated exciton formation, is proposed as the transition
mechanism.Comment: 8 pages including 4 figure
Parity forbidden excitations of Sr2CuO2Cl2 revealed by optical third-harmonic spectroscopy
We present the first study of nonlinear optical third harmonic generation in
the strongly correlated charge-transfer insulator Sr2CuO2Cl2. For fundamental
excitation in the near-infrared, the THG spectrum reveals a strongly resonant
response for photon energies near 0.7 eV. Polarization analysis reveals this
novel resonance to be only partially accounted for by three-photon excitation
to the optical charge-transfer exciton, and indicates that an even-parity
excitation at 2 eV, with a_1g symmetry, participates in the third harmonic
susceptibility.Comment: Requires RevTeX v4.0beta
Theory of exciton-exciton correlation in nonlinear optical response
We present a systematic theory of Coulomb interaction effects in the
nonlinear optical processes in semiconductors using a perturbation series in
the exciting laser field. The third-order dynamical response consists of
phase-space filling correction, mean-field exciton-exciton interaction, and
two-exciton correlation effects expressed as a force-force correlation
function. The theory provides a unified description of effects of bound and
unbound biexcitons, including memory-effects beyond the Markovian
approximation. Approximations for the correlation function are presented.Comment: RevTex, 35 pages, 10 PostScript figs, shorter version submitted to
Physical Review
Collective oscillations driven by correlation in the nonlinear optical regime
We present an analytical and numerical study of the coherent exciton
polarization including exciton-exciton correlation. The time evolution after
excitation with ultrashort optical pulses can be divided into a slowly varying
polarization component and novel ultrafast collective modes. The frequency and
damping of the collective modes are determined by the high-frequency properties
of the retarded two-exciton correlation function, which includes Coulomb
effects beyond the mean-field approximation. The overall time evolution depends
on the low-frequency spectral behavior. The collective mode, well separated
from the slower coherent density evolution, manifests itself in the coherent
emission of a resonantly excited excitonic system, as demonstrated numerically.Comment: 4 pages, 4 figures, accepted for publication in Physical Review
Letter
Radiative corrections to the excitonic molecule state in GaAs microcavities
The optical properties of excitonic molecules (XXs) in GaAs-based quantum
well microcavities (MCs) are studied, both theoretically and experimentally. We
show that the radiative corrections to the XX state, the Lamb shift
and radiative width , are
large, about of the molecule binding energy , and
definitely cannot be neglected. The optics of excitonic molecules is dominated
by the in-plane resonant dissociation of the molecules into outgoing
1-mode and 0-mode cavity polaritons. The later decay channel,
``excitonic molecule 0-mode polariton + 0-mode
polariton'', deals with the short-wavelength MC polaritons invisible in
standard optical experiments, i.e., refers to ``hidden'' optics of
microcavities. By using transient four-wave mixing and pump-probe
spectroscopies, we infer that the radiative width, associated with excitonic
molecules of the binding energy meV, is
meV in the microcavities and
meV in a reference GaAs single quantum
well (QW). We show that for our high-quality quasi-two-dimensional
nanostructures the limit, relevant to the XX states, holds at
temperatures below 10 K, and that the bipolariton model of excitonic molecules
explains quantitatively and self-consistently the measured XX radiative widths.
We also find and characterize two critical points in the dependence of the
radiative corrections against the microcavity detuning, and propose to use the
critical points for high-precision measurements of the molecule bindingenergy
and microcavity Rabi splitting.Comment: 16 pages, 11 figures, accepted for publication in Phys. Rev.
Superfluidity of "dirty" indirect excitons and magnetoexcitons in two-dimensional trap
The superfluid phase transition of bosons in a two-dimensional (2D) system
with disorder and an external parabolic potential is studied. The theory is
applied to experiments on indirect excitons in coupled quantum wells. The
random field is allowed to be large compared to the dipole-dipole repulsion
between excitons. The slope of the external parabolic trap is assumed to change
slowly enough to apply the local density approximation (LDA) for the superfluid
density, which allows us to calculate the Kosterlitz-Thouless temperature
at each local point of the trap. The superfluid phase occurs
around the center of the trap () with the normal phase outside
this area. As temperature increases, the superfluid area shrinks and disappears
at temperature . Disorder acts to deplete the condensate; the
minimal total number of excitons for which superfluidity exists increases with
disorder at fixed temperature. If the disorder is large enough, it can destroy
the superfluid entirely. The effect of magnetic field is also calculated for
the case of indirect excitons. In a strong magnetic field , the superfluid
component decreases, primarily due to the change of the exciton effective mass.Comment: 13 pages, 3 figure
- …
