691 research outputs found
Different Clusters of Text from Ancient China, Different Mathematical Ontologies
Sources attesting to mathematical activities in ancient China form at least four distinct clusters of texts, bespeaking at least four different—though overlapping—ways of practicing mathematics. I will focus on two such sets of documents: the canons that in the seventh century constituted one of the two curricula taught in the Imperial “School of Mathematics,” and manuscripts recently excavated from tombs sealed in the last centuries BCE. I will argue that these two sets of documents testify to two different ways of practicing mathematics, which related to different material practices. Accordingly, we can perceive that mathematical objects were shaped and explored in different ways, with significant consequences for the knowledge produced
Ultrafast Enhancement of Ferromagnetism via Photoexcited Holes in GaMnAs
We report on the observation of ultrafast photo-enhanced ferromagnetism in
GaMnAs. It is manifested as a transient magnetization increase on a 100-ps time
scale, after an initial sub-ps demagnetization. The dynamic magnetization
enhancement exhibits a maximum below the Curie temperature Tc and dominates the
demagnetization component when approaching Tc. We attribute the observed
ultrafast collective ordering to the p-d exchange interaction between
photoexcited holes and Mn spins, leading to a correlation-induced peak around
20K and a transient increase in Tc.Comment: 4 page
Observation of inter-Landau-level quantum coherence in semiconductor quantum wells
Using three-pulse four-wave-mixing femtosecond spectroscopy, we excite a
non-radiative coherence between the discrete Landau levels of an undoped
quantum well and study its dynamics. We observe quantum beats that reflect the
time evolution of the coherence between the two lowest Landau level
magnetoexcitons. We interpret our observations using a many-body theory and
find that the inter Landau level coherence decays with a new time constant,
substantially longer than the corresponding interband magnetoexciton dephasing
times. Our results indicate a new intraband excitation dynamics that cannot be
described in terms of uncorrelated interband excitations.Comment: 5 pages, 5 figures, to appear in Phys. Rev. B Rapid Communication
Ultrafast dynamics of coherences in the quantum Hall system
Using three-pulse four-wave-mixing optical spectroscopy, we study the
ultrafast dynamics of the quantum Hall system. We observe striking differences
as compared to an undoped system, where the 2D electron gas is absent. In
particular, we observe a large off-resonant signal with strong oscillations.
Using a microscopic theory, we show that these are due to many-particle
coherences created by interactions between photoexcited carriers and collective
excitations of the 2D electron gas. We extract quantitative information about
the dephasing and interference of these coherences.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let
Photonic crystals of coated metallic spheres
It is shown that simple face-centered-cubic (fcc) structures of both metallic
and coated metallic spheres are ideal candidates to achieve a tunable complete
photonic bandgap (CPBG) for optical wavelengths using currently available
experimental techniques. For coated microspheres with the coating width to
plasma wavelength ratio and the coating and host
refractive indices and , respectively, between 1 and 1.47, one can
always find a sphere radius such that the relative gap width (gap
width to the midgap frequency ratio) is larger than 5% and, in some cases,
can exceed 9%. Using different coatings and supporting liquids, the width
and midgap frequency of a CPBG can be tuned considerably.Comment: 14 pages, plain latex, 3 ps figures, to appear in Europhys. Lett. For
more info on this subject see
http://www.amolf.nl/research/photonic_materials_theory/moroz/moroz.htm
Theory of exciton-exciton correlation in nonlinear optical response
We present a systematic theory of Coulomb interaction effects in the
nonlinear optical processes in semiconductors using a perturbation series in
the exciting laser field. The third-order dynamical response consists of
phase-space filling correction, mean-field exciton-exciton interaction, and
two-exciton correlation effects expressed as a force-force correlation
function. The theory provides a unified description of effects of bound and
unbound biexcitons, including memory-effects beyond the Markovian
approximation. Approximations for the correlation function are presented.Comment: RevTex, 35 pages, 10 PostScript figs, shorter version submitted to
Physical Review
Polariton propagation in weak confinement quantum wells
Exciton-polariton propagation in a quantum well, under centre-of-mass
quantization, is computed by a variational self-consistent microscopic theory.
The Wannier exciton envelope functions basis set is given by the simple
analytical model of ref. [1], based on pure states of the centre-of-mass wave
vector, free from fitting parameters and "ad hoc" (the so called additional
boundary conditions-ABCs) assumptions. In the present paper, the former
analytical model is implemented in order to reproduce the centre-of-mass
quantization in a large range of quantum well thicknesses (5a_B < L < inf.).
The role of the dynamical transition layer at the well/barrier interfaces is
discussed at variance of the classical Pekar's dead-layer and ABCs. The Wannier
exciton eigenstates are computed, and compared with various theoretical models
with different degrees of accuracy. Exciton-polariton transmission spectra in
large quantum wells (L>> a_B) are computed and compared with experimental
results of Schneider et al.\cite{Schneider} in high quality GaAs samples. The
sound agreement between theory and experiment allows to unambiguously assign
the exciton-polariton dips of the transmission spectrum to the pure states of
the Wannier exciton center-of-mass quantization.Comment: 15 pages, 15 figures; will appear in Phys.Rev.
Giant Superfluorescent Bursts from a Semiconductor Magnetoplasma
Currently, considerable resurgent interest exists in the concept of
superradiance (SR), i.e., accelerated relaxation of excited dipoles due to
cooperative spontaneous emission, first proposed by Dicke in 1954. Recent
authors have discussed SR in diverse contexts, including cavity quantum
electrodynamics, quantum phase transitions, and plasmonics. At the heart of
these various experiments lies the coherent coupling of constituent particles
to each other via their radiation field that cooperatively governs the dynamics
of the whole system. In the most exciting form of SR, called superfluorescence
(SF), macroscopic coherence spontaneously builds up out of an initially
incoherent ensemble of excited dipoles and then decays abruptly. Here, we
demonstrate the emergence of this photon-mediated, cooperative, many-body state
in a very unlikely system: an ultradense electron-hole plasma in a
semiconductor. We observe intense, delayed pulses, or bursts, of coherent
radiation from highly photo-excited semiconductor quantum wells with a
concomitant sudden decrease in population from total inversion to zero. Unlike
previously reported SF in atomic and molecular systems that occur on nanosecond
time scales, these intense SF bursts have picosecond pulse-widths and are
delayed in time by tens of picoseconds with respect to the excitation pulse.
They appear only at sufficiently high excitation powers and magnetic fields and
sufficiently low temperatures - where various interactions causing decoherence
are suppressed. We present theoretical simulations based on the relaxation and
recombination dynamics of ultrahigh-density electron-hole pairs in a quantizing
magnetic field, which successfully capture the salient features of the
experimental observations.Comment: 21 pages, 4 figure
Ultrafast Coulomb-induced dynamics of 2D magnetoexcitons
We study theoretically the ultrafast nonlinear optical response of quantum
well excitons in a perpendicular magnetic field. We show that for
magnetoexcitons confined to the lowest Landau levels, the third-order
four-wave-mixing (FWM) polarization is dominated by the exciton-exciton
interaction effects. For repulsive interactions, we identify two regimes in the
time-evolution of the optical polarization characterized by exponential and
{\em power law} decay of the FWM signal. We describe these regimes by deriving
an analytical solution for the memory kernel of the two-exciton wave-function
in strong magnetic field. For strong exciton-exciton interactions, the decay of
the FWM signal is governed by an antibound resonance with an
interaction-dependent decay rate. For weak interactions, the continuum of
exciton-exciton scattering states leads to a long tail of the time-integrated
FWM signal for negative time delays, which is described by the product of a
power law and a logarithmic factor. By combining this analytic solution with
numerical calculations, we study the crossover between the exponential and
non-exponential regimes as a function of magnetic field. For attractive
exciton-exciton interaction, we show that the time-evolution of the FWM signal
is dominated by the biexcitonic effects.Comment: 41 pages with 11 fig
- …
