14 research outputs found

    SB-224289 Antagonizes the Antifungal Mechanism of the Marine Depsipeptide Papuamide A

    Get PDF
    In order to expand the repertoire of antifungal compounds a novel, high-throughput phenotypic drug screen targeting fungal phosphatidylserine (PS) synthase (Cho1p) was developed based on antagonism of the toxin papuamide A (Pap-A). Pap-A is a cyclic depsipeptide that binds to PS in the membrane of wild-type Candida albicans, and permeabilizes its plasma membrane, ultimately causing cell death. Organisms with a homozygous deletion of the CHO1 gene (cho1ΔΔ) do not produce PS and are able to survive in the presence of Pap-A. Using this phenotype (i.e. resistance to Pap-A) as an indicator of Cho1p inhibition, we screened over 5,600 small molecules for Pap-A resistance and identified SB-224289 as a positive hit. SB-224289, previously reported as a selective human 5-HT1B receptor antagonist, also confers resistance to the similar toxin theopapuamide (TPap-A), but not to other cytotoxic depsipeptides tested. Structurally similar molecules and truncated variants of SB-224289 do not confer resistance to Pap-A, suggesting that the toxin-blocking ability of SB-224289 is very specific. Further biochemical characterization revealed that SB-224289 does not inhibit Cho1p, indicating that Pap-A resistance is conferred by another undetermined mechanism. Although the mode of resistance is unclear, interaction between SB-224289 and Pap-A or TPap-A suggests this screening assay could be adapted for discovering other compounds which could antagonize the effects of other environmentally- or medically-relevant depsipeptide toxins

    Overproduction of Phospholipids by the Kennedy Pathway Leads to Hypervirulence in Candida albicans

    Get PDF
    Candida albicans is an opportunistic human fungal pathogen that causes life-threatening systemic infections, as well as oral mucosal infections. Phospholipids are crucial for pathogenesis in C. albicans, as disruption of phosphatidylserine (PS) and phosphatidylethanolamine (PE) biosynthesis within the cytidine diphosphate diacylglycerol (CDP-DAG) pathway causes avirulence in a mouse model of systemic infection. The synthesis of PE by this pathway plays a crucial role in virulence, but it was unknown if downstream conversion of PE to phosphatidylcholine (PC) is required for pathogenicity. Therefore, the enzymes responsible for methylating PE to PC, Pem1 and Pem2, were disrupted. The resulting pem1Δ/Δ pem2Δ/Δ mutant was not less virulent in mice, but rather hypervirulent. Since the pem1Δ/Δ pem2Δ/Δ mutant accumulated PE, this led to the hypothesis that increased PE synthesis increases virulence. To test this, the alternative Kennedy pathway for PE/PC synthesis was exploited. This pathway makes PE and PC from exogenous ethanolamine and choline, respectively, using three enzymatic steps. In contrast to Saccharomyces cerevisiae, C. albicans was found to use one enzyme, Ept1, for the final enzymatic step (ethanolamine/cholinephosphotransferase) that generates both PE and PC. EPT1 was overexpressed, which resulted in increases in both PE and PC synthesis. Moreover, the EPT1 overexpression strain is hypervirulent in mice and causes them to succumb to system infection more rapidly than wild-type. In contrast, disruption of EPT1 causes loss of PE and PC synthesis by the Kennedy pathway, and decreased kidney fungal burden during the mouse systemic infection model, indicating a mild loss of virulence. In addition, the ept1Δ/Δ mutant exhibits decreased cytotoxicity against oral epithelial cells in vitro, whereas the EPT1 overexpression strain exhibits increased cytotoxicity. Taken altogether, our data indicate that mutations that result in increased PE synthesis cause greater virulence and mutations that decrease PE synthesis attenuate virulence

    Overproduction of Phospholipids by the Kennedy Pathway Leads to Hypervirulence in Candida albicans

    Get PDF
    Candida albicans is an opportunistic human fungal pathogen that causes life-threatening systemic infections, as well as oral mucosal infections. Phospholipids are crucial for pathogenesis in C. albicans, as disruption of phosphatidylserine (PS) and phosphatidylethanolamine (PE) biosynthesis within the cytidine diphosphate diacylglycerol (CDP-DAG) pathway causes avirulence in a mouse model of systemic infection. The synthesis of PE by this pathway plays a crucial role in virulence, but it was unknown if downstream conversion of PE to phosphatidylcholine (PC) is required for pathogenicity. Therefore, the enzymes responsible for methylating PE to PC, Pem1 and Pem2, were disrupted. The resulting pem1Δ/Δ pem2Δ/Δ mutant was not less virulent in mice, but rather hypervirulent. Since the pem1Δ/Δ pem2Δ/Δ mutant accumulated PE, this led to the hypothesis that increased PE synthesis increases virulence. To test this, the alternative Kennedy pathway for PE/PC synthesis was exploited. This pathway makes PE and PC from exogenous ethanolamine and choline, respectively, using three enzymatic steps. In contrast to Saccharomyces cerevisiae, C. albicans was found to use one enzyme, Ept1, for the final enzymatic step (ethanolamine/cholinephosphotransferase) that generates both PE and PC. EPT1 was overexpressed, which resulted in increases in both PE and PC synthesis. Moreover, the EPT1 overexpression strain is hypervirulent in mice and causes them to succumb to system infection more rapidly than wild-type. In contrast, disruption of EPT1 causes loss of PE and PC synthesis by the Kennedy pathway, and decreased kidney fungal burden during the mouse systemic infection model, indicating a mild loss of virulence. In addition, the ept1Δ/Δ mutant exhibits decreased cytotoxicity against oral epithelial cells in vitro, whereas the EPT1 overexpression strain exhibits increased cytotoxicity. Taken altogether, our data indicate that mutations that result in increased PE synthesis cause greater virulence and mutations that decrease PE synthesis attenuate virulence

    PS, It’s Complicated: The Roles of Phosphatidylserine and Phosphatidylethanolamine in the Pathogenesis of Candida albicans and Other Microbial Pathogens

    No full text
    The phospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) play important roles in the virulence of Candida albicans and loss of PS synthesis or synthesis of PE from PS (PS decarboxylase) severely compromises virulence in C. albicans in a mouse model of systemic candidiasis. This review discusses synthesis of PE and PS in C. albicans and mechanisms by which these lipids impact virulence in this fungus. This is further compared to how PS and PE synthesis impact virulence in other fungi, parasites and bacteria. Furthermore, the impact of PS asymmetry on virulence and extracellular vesicle formation in several microbes is reviewed. Finally, the potential for PS and PE synthases as drug targets in these various kingdoms is also examined

    Role of phosphatidylserine synthase in shaping the phospholipidome of Candida albicans

    No full text
    This work was supported by the National Institutes of Health NIH R01AL105690.Phosphatidylserine (PS) synthase (Cho1p) and the PS decarboxylase enzymes (Psd1p and Psd2p), which synthesize PS and phosphatidylethanolamine (PE), respectively, are crucial for Candida albicans virulence. Mutations that disrupt these enzymes compromise virulence. These enzymes are part of the cytidine diphosphate-diacylglycerol pathway (i.e. de novo pathway) for phospholipid synthesis. Understanding how losses of PS and/or PE synthesis pathways affect the phospholipidome of Candida is important for fully understanding how these enzymes impact virulence. The cho1Δ/Δ and psd1Δ/Δ psd2Δ/Δ mutations cause similar changes in levels of phosphatidic acid, phosphatidylglycerol, phosphatidylinositol and PS. However, only slight changes were seen in PE and phosphatidylcholine (PC). This finding suggests that the alternative mechanism for making PE and PC, the Kennedy pathway, can compensate for loss of the de novo synthesis pathway. Candida albicans Cho1p, the lipid biosynthetic enzyme with the most potential as a drug target, has been biochemically characterized, and analysis of its substrate specificity and kinetics reveal that these are similar to those previously published for Saccharomyces cerevisiae Cho1p.PostprintPeer reviewe

    SB-224289 Antagonizes the Antifungal Mechanism of the Marine Depsipeptide Papuamide A

    Get PDF
    <div><p>In order to expand the repertoire of antifungal compounds a novel, high-throughput phenotypic drug screen targeting fungal phosphatidylserine (PS) synthase (Cho1p) was developed based on antagonism of the toxin papuamide A (Pap-A). Pap-A is a cyclic depsipeptide that binds to PS in the membrane of wild-type <i>Candida albicans</i>, and permeabilizes its plasma membrane, ultimately causing cell death. Organisms with a homozygous deletion of the <i>CHO1</i> gene (<i>cho1ΔΔ</i>) do not produce PS and are able to survive in the presence of Pap-A. Using this phenotype (i.e. resistance to Pap-A) as an indicator of Cho1p inhibition, we screened over 5,600 small molecules for Pap-A resistance and identified SB-224289 as a positive hit. SB-224289, previously reported as a selective human 5-HT<sub>1B</sub> receptor antagonist, also confers resistance to the similar toxin theopapuamide (TPap-A), but not to other cytotoxic depsipeptides tested. Structurally similar molecules and truncated variants of SB-224289 do not confer resistance to Pap-A, suggesting that the toxin-blocking ability of SB-224289 is very specific. Further biochemical characterization revealed that SB-224289 does not inhibit Cho1p, indicating that Pap-A resistance is conferred by another undetermined mechanism. Although the mode of resistance is unclear, interaction between SB-224289 and Pap-A or TPap-A suggests this screening assay could be adapted for discovering other compounds which could antagonize the effects of other environmentally- or medically-relevant depsipeptide toxins.</p></div

    The full structure of SB-224289 is required to provide Pap-A resistance.

    No full text
    <p><b>(A)</b> and <b>(B)</b> show the structures of purchased or synthesized analogs of SB-224289, respectively. In <b>(C)</b> and <b>(D)</b> 1x10<sup>4</sup> cells/ml were treated with a serial dilution of SB-224289, test compounds or DMSO control, and then allowed to incubate for 6 hours at 37°C. Pap-A was added at either 4 μg/ml or 5 μg/ml after 6 hours the plate was incubated at 37°C overnight. Alamar Blue was added and fluorescence signal measured at 590 nm indicating survival of cells.</p

    SB-224289 and MG-624 Do Not Inhibit the Activity of Cho1p.

    No full text
    <p>PS synthase activity shown as counts per minute per milligram of protein, quantifying <sup>3</sup>H-l-serine incorporated into PS. Addition of varying concentrations of SB-224289 (A) and MG-624 (B) did not have an inhibitory effect on PS production.</p

    Screen of FDA-approved bioactive compounds for those that confer Pap-A resistance.

    No full text
    <p>5,760 compounds were screened for their effects on the growth of wild-type <i>C</i>. <i>albicans</i> (open black circles) in the presence of 4 μg/ml Pap-A. Cell growth was measured by transformation of the dye Alamar Blue over approximately 3 hours at 37°C. The <i>cho1ΔΔ</i> positive control cells growth in the presence of Pap-A with no compounds from the library are represented by green circles. Compounds that allowed wild-type cells to display >90% (above the blue line) of the growth of <i>cho1ΔΔ</i> control were designated with filled-in blue circles. Around 95% of the tested compounds showed growth levels closer to the negative control, wells which contained no cells or drugs (open red circles). The horizontal lines show the 99th quantile (purple) where 99% of the compounds exhibited growth and the 95th quantile (yellow) 95% of the compounds lie. The vertical lines divide the compounds by the 384-well plate in which they were screened which correlate to plate numbers along the bottom. A full description of the screening method is found in Materials and Methods.</p

    Resistance to Pap-A correlates with decreases in PS.

    No full text
    <p>The <i>cho1ΔΔ</i> mutant is resistant to all concentrations of papuamide A (Pap-A) indicating a total lack of PS. The <i>cho1ΔΔ</i>::<i>CHO1</i> reintegrant strain is more resistant to Pap-A than the wild-type (WT), but less resistant than the <i>cho1ΔΔ</i> mutant.</p
    corecore