17 research outputs found

    Investigating the Potential Role of Genetic and Epigenetic Variation of DNA Methyltransferase Genes in Hyperplastic Polyposis Syndrome

    Get PDF
    BACKGROUND: Hyperplastic Polyposis Syndrome (HPS) is a condition associated with multiple serrated polyps, and an increased risk of colorectal cancer (CRC). At least half of CRCs arising in HPS show a CpG island methylator phenotype (CIMP), potentially linked to aberrant DNA methyltransferase (DNMT) activity. CIMP is associated with methylation of tumor suppressor genes including regulators of DNA mismatch repair (such as MLH1, MGMT), and negative regulators of Wnt signaling (such as WIF1). In this study, we investigated the potential for interaction of genetic and epigenetic variation in DNMT genes, in the aetiology of HPS. METHODS: We utilized high resolution melting (HRM) analysis to screen 45 cases with HPS for novel sequence variants in DNMT1, DNMT3A, DNMT3B, and DNMT3L. 21 polyps from 13 patients were screened for BRAF and KRAS mutations, with assessment of promoter methylation in the DNMT1, DNMT3A, DNMT3B, DNMT3L MLH1, MGMT, and WIF1 gene promoters. RESULTS: No pathologic germline mutations were observed in any DNA-methyltransferase gene. However, the T allele of rs62106244 (intron 10 of DNMT1 gene) was over-represented in cases with HPS (p<0.01) compared with population controls. The DNMT1, DNMT3A and DNMT3B promoters were unmethylated in all instances. Interestingly, the DNMT3L promoter showed low levels of methylation in polyps and normal colonic mucosa relative to matched disease free cells with methylation level negatively correlated to expression level in normal colonic tissue. DNMT3L promoter hypomethylation was more often found in polyps harbouring KRAS mutations (p = 0.0053). BRAF mutations were common (11 out of 21 polyps), whilst KRAS mutations were identified in 4 of 21 polyps. CONCLUSIONS: Genetic or epigenetic alterations in DNMT genes do not appear to be associated with HPS, but further investigation of genetic variation at rs62106244 is justified given the high frequency of the minor allele in this case series.Musa Drini, Nicholas C. Wong, Hamish S. Scott, Jeffrey M. Craig, Alexander Dobrovic, Chelsee A. Hewitt, Christofer Dow, Joanne P. Young, Mark A. Jenkins, Richard Saffery and Finlay A. Macra

    Overexpression of interferon alpha or beta receptors in the brain of adult Ts1Cje mouse model of Down syndrome

    Get PDF
    Introduction: Down syndrome (DS) is a generic disorder with trisomy of human chromosome 21 (HSA21) and all DS patients exhibited intellectual disability. Ts1Cje mouse model of DS has partial triplication of mouse chromosome 16 (MMU16) which is homologous to HSA21. The JAK (Janus kinase) and STAT (signal transducer and activator of transcription) signalling pathway is involved in neurogenesis and gliogenesis regulation. Cytokines especially the interferons (IFN) family is the major activator of JAK-STAT signalling pathway. Furthermore, interferon receptor genes (Ifnar), Ifnar2 and Ifngr2 are located at the triplicated region in MMU16 and also in HSA21. Method: Gene expression of Ifnar1, Ifnar2, Ifngr2 and associated genes in JAK-STAT signalling pathway (Jak1, Jak2, Stat1, Stat3 and Stat6) in the cerebral cortex and cerebellum between Ts1Cje and wild type control at four time-points; post natal day (P)1, P15, P30 and P84 was investigated by using qRT-PCR techniques. Western blotting was used to confirm the overexpression of Ifnar1, Ifnar2 and Stat1 in the cerebral cortex and cerebellum of Ts1Cje aged P84. Results: Ifnar1, Ifnar2, Ifngr2 and Stat1 were significantly overexpression in the cerebral cortex and cerebellum of Ts1Cje at various time points as compared to control littermates. Protein expression analysis confirmed the overexpression of Ifnar1 and Stat1 in the cerebellum of Ts1Cje mouse at P84 as compared to wild type. The findings suggest that overexpression of interferon receptors will increase sensitivity towards interferon levels in Ts1Cje mouse brain. Consequently, the over-stimulated JAK-STAT signalling pathway may contribute to the defective neurogenesis the Down syndrome mouse brain

    Gene Network Disruptions and Neurogenesis Defects in the Adult Ts1Cje Mouse Model of Down Syndrome

    Get PDF
    Background: Down syndrome (DS) individuals suffer mental retardation with further cognitive decline and early onset Alzheimer's disease. Methodology/Principal Findings: To understand how trisomy 21 causes these neurological abnormalities we investigated changes in gene expression networks combined with a systematic cell lineage analysis of adult neurogenesis using the Ts1Cje mouse model of DS. We demonstrated down regulation of a number of key genes involved in proliferation and cell cycle progression including Mcm7, Brca2, Prim1, Cenpo and Aurka in trisomic neurospheres. We found that trisomy did not affect the number of adult neural stem cells but resulted in reduced numbers of neural progenitors and neuroblasts. Analysis of differentiating adult Ts1Cje neural progenitors showed a severe reduction in numbers of neurons produced with a tendency for less elaborate neurites, whilst the numbers of astrocytes was increased. Conclusions/Significance: We have shown that trisomy affects a number of elements of adult neurogenesis likely to result in a progressive pathogenesis and consequently providing the potential for the development of therapies to slow progression of, or even ameliorate the neuronal deficits suffered by DS individuals.Chelsee A. Hewitt, King-Hwa Ling, Tobias D. Merson, Ken M. Simpson, Matthew E. Ritchie, Sarah L. King, Melanie A. Pritchard, Gordon K. Smyth, Tim Thomas, Hamish S. Scott and Anne K. Vos

    KIT

    No full text

    Detection of BRAF mutations in patients with hairy cell leukemia and related lymphoproliferative disorders

    No full text
    Hairy cell leukemia has been shown to be strongly associated with the BRAF V600E mutation. We screened 59 unenriched archived bone marrow aspirate and peripheral blood samples from 51 patients with hairy cell leukemia using high resolution melting analysis and confirmatory Sanger sequencing. The BRAF V600E mutation was detected in 38 samples (from 36 patients). The BRAF V600E mutation was detected in all samples with disease involvement above the limit of sensitivity of the techniques used. Thirty-three of 34 samples from other hematologic malignancies were negative for BRAF mutations. A BRAF K601E mutation was detected in a patient with splenic marginal zone lymphoma. Our data support the recent finding of a disease defining point mutation in hairy cell leukemia. Furthermore, high resolution melting with confirmatory Sanger sequencing are useful methods that can be employed in routine diagnostic laboratories to detect BRAF mutations in patients with hairy cell leukemia and related lymphoproliferative disorders

    Germline mutation of ARF in a melanoma kindred

    No full text
    Familial melanoma predisposition is associated with germline mutations at the CDKN2A/ARF locus in up to 40 % of families. The exact role of the two proteins encoded by this complex locus in this predisposition is unclear. Most mutations affect either CDKN2A only or products of both genes. Recently a deletion affecting ARF-specific exon 1b was reported in a family with melanoma and neural tumours. However, the possibility of this deletion also altering the CDKN2A transcript could not be excluded. More convincingly, a 16 base pair insertion in exon 1b has been reported in an individual with multiple melanomas suggesting a direct role for ARF in melanoma predisposition. We report here a splice mutation in exon 1b in a family with melanoma that results in ARF haploinsufficiency. The mutation was observed in a mother and daughter with melanoma. A sibling of the mother with breast cancer also had this mutation. Analysis of the melanoma from one individual revealed a 62bp deletion in exon 3 of the wildtype allele and loss of the mutant allele; these somatic changes would affect both CDKN2A and ARF. These somatic events suggest that concomitant inactivation of both ARF and CDKN2A may be necessary for melanoma development and that mutations in ARF and CDKN2A possibly confer different levels of susceptibility to melanoma, with the former associated with lesser predisposition. In this situation, the events follow a ‘three-hit ’ model as observed in tumours from FAP patients with an attenuated phenotype. Overall, the data suggest a direct role for ARF haploinsufficiency in melanoma predisposition and co-operation between ARF and CDKN2A in tumour formation, consistent with recent observations in Cdkn2a-specific knockout mice

    Transcriptional profiling of the postnatal brain of the Ts1Cje mouse model of Down syndrome

    Get PDF
    The Ts1Cje mouse model of Down syndrome (DS) has partial trisomy of mouse chromosome 16 (MMU16), which is syntenic to human chromosome 21 (HSA21). It develops various neuropathological features demonstrated by DS patients such as reduced cerebellar volume [1] and altered hippocampus-dependent learning and memory [2] and [3]. To understand the global gene expression effect of the partially triplicated MMU16 segment on mouse brain development, we performed the spatiotemporal transcriptome analysis of Ts1Cje and disomic control cerebral cortex, cerebellum and hippocampus harvested at four developmental time-points: postnatal day (P)1, P15, P30 and P84. Here, we provide a detailed description of the experimental and analysis procedures of the microarray dataset, which has been deposited in the Gene Expression Omnibus (GSE49050) database

    Expression profiling of notch signalling pathway and gamma-secretase activity in the brain of Ts1Cje mouse model of down syndrome

    No full text
    Notch signalling pathway is involved in the proliferation of neural progenitor cells (NPCs), to inhibit neuronal cell commitment and to promote glial cell fate. Notch protein is cleaved by gamma-secretase, a multisubunit transmembrane protein complex that releases the Notch intracellular domain (NICD) and subsequently activates the downstream targets. Down syndrome (DS) individuals exhibit an increased number of glial cells (particularly astrocytes), and reduced number of neurons suggesting the involvement of Notch signalling pathway in the neurogenic-to-gliogenic shift in DS brain. Ts1Cje is a DS mouse model that exhibit similar neuropathology to human DS individuals. To date, the spatiotemporal gene expression of the Notch and gamma-secretase genes have not been characterised in Ts1Cje mouse brain. Understanding the expression pattern of Notch and gamma-secretase genes may provide a better understanding of the underlying mechanism that leads to the shift. Gene expression analysis using RT-qPCR was performed on early embryonic and postnatal development of DS brain. In the developing mouse brain, mRNA expression analysis showed that gamma-secretase members (Psen1, Pen-2, Aph-1b, and Ncstn) were not differentially expressed. Notch2 was found to be downregulated in the developing Ts1Cje brain samples. Postnatal gene expression study showed complex expression patterns and Notch1 and Notch2 genes were found to be significantly downregulated in the hippocampus at postnatal day 30. Results from RT-qPCR analysis from E15.5 neurosphere culture showed an increase of expression of Psen1, and Aph-1b but downregulation of Pen-2 and Ncstn genes. Gamma-secretase activity in Ts1Cje E15.5 neurospheres was significantly increased by fivefold. In summary, the association and the role of Notch and gamma-secretase gene expression throughout development with neurogenic-to-gliogenic shift in Ts1Cje remain undefined and warrant further validation
    corecore