107 research outputs found
Sugammadex is effective in reversing rocuronium in the presence of antibiotics
Background: The effectiveness of sugammadex in reversing rocuronium-induced neuromuscular blockade (NMB) in the presence of drugs that may potentiate NMB remains to be fully established. The aim of this post-hoc analysis of data from a Phase III clinical trial (VISTA; NCT00298831) was to investigate the impact of antibiotics on recovery from rocuronium-induced NMB after administration of sugammadex for reversal, and compared the neuromuscular recovery in patients who received antibiotics preoperatively with those who did not.Methods: A Phase III, multicenter, open-label study designed to reflect potential use of sugammadex in clinical practice was conducted at 19 sites. Data obtained from patients who received antibiotics were compared with the cohort of patients who underwent the same protocol without antibiotics. Each subject received rocuronium 0.6 mg/kg for muscle relaxation, after which tracheal intubation was performed; patients were also permitted to receive maintenance doses of rocuronium 0.15 mg/kg to maintain the desired level of NMB throughout the operation, as required. At least 15 min after the last rocuronium dose, patients received sugammadex 4.0 mg/kg for reversal. Neuromuscular monitoring was continued until a train-of-four (TOF) ratio of ≥0.9 was achieved or the anesthetic was discontinued.Results: The presence of antibiotics prior to the administration of sugammadex did not affect the recovery time from rocuronium-induced NMB when sugammadex 4.0 mg/kg was administered at least 15 min after the last dose of rocuronium. In the presence of antibiotics, the geometric mean (95% CI) time from administration of sugammadex 4.0 mg/kg to recovery of the TOF ratio to ≥0.9 was 1.6 (1.4-1.9) min (range: 0.7-10.5 min), compared with 2.0 (1.8-2.3) min (range: 0.7-22.3 min) for patients who did not receive antibiotics.Conclusions: These findings suggest that prophylactic antibiotic use is unlikely to have a major impact on the recovery time from rocuronium-induced NMB with sugammadex reversal.Trial registration: ClinicalTrials.gov Identifier: NCT00298831
Pain control after total knee arthroplasty: a randomized trial comparing local infiltration anesthesia and continuous femoral block
Local infiltration analgesia (LIA) is a new multimodal wound infiltration method. It
has attracted growing interest in recent years and is widely used all over the world for
treating postoperative pain after knee and hip arthroplasty. This method is based on
systematic infiltration of a mixture of ropivacaine, a long acting local anesthetic,
ketorolac, a cyclooxygenase inhibitor (NSAID), and adrenalin around all structures
subject to surgical trauma inknee and hip arthroplasty.
Two patient cohorts of 40 patients scheduled for elective total knee arthroplasty
(TKA) and 15 patients scheduled for total hip arthroplasty (THA) contributed to the
work presented in this thesis. In a randomized trial the efficacy of LIA in TKA with
regard to pain at rest and upon movement was compared to femoral block. Both
methods result in a high quality pain relief and similar morphine consumption, but
fewer patients in the LIA group reported pain of 7/10 on any occasion during the 24 h
monitoring period (paper I).
In the same patient cohort the maximal total plasma concentration of ropivacaine was
below the established toxic threshold for most patients although a few reached
potentially toxic concentrations of 1.4-1.7 mg/L. The time to maximal detected
plasma concentration was around 4-6 h after release of tourniquet in TKA (paper II).
All patients in the THA cohort were subjected to the routine LIA protocol. In these
patients both the total and unbound plasma concentration of ropivacaine was
determined. The concentration was below the established toxic threshold. As
ropivacaine binds to a-1 acid glycoprotein(AAG) we assessed the possibility that
increased AAG may decrease the unbound concentration of ropivacaine. A40 %
increase in AAG was detected during the first 24 h after surgery, however the
fraction of unbound ropivacaine remained the same. There was a trend towards
increased C max of ropivacaine with increasing age and decreasing creatinine
clearance but the statistical power was too low to draw any conclusion (paper III).
Administration of 30mg ketorolac according to the LIA protocol both in TKA and
THA resulted in a similar Cmax as previously reported after 10 mg intramuscular
ketorolac (paper II, paper IV). Neither age, nor body weight or BMI, nor creatinine
clearance, correlates to maximal ketorolac plasma concentration or total exposure to
ketorolac (AUC) (paper IV).
In conclusion, LIA provides good postoperative analgesia which is similar to femoral
block after total knee arthroplasty. The plasma concentration of ropivacaine seems to
be below toxic levels in most TKA patients. The unbound plasma concentration of
ropivcaine in THA seems to be below the toxic level.
The use of ketorolac in LIA may not be safer than other routes of administration, and
similar restrictions should be applied in patients at risk of developing side effects
Clinical Heterogeneity of Duchenne Muscular Dystrophy (DMD): Definition of Sub-Phenotypes and Predictive Criteria by Long-Term Follow-Up
International audienceBACKGROUND: To explore clinical heterogeneity of Duchenne muscular dystrophy (DMD), viewed as a major obstacle to the interpretation of therapeutic trials METHODOLOGY/PRINCIPAL FINDINGS: A retrospective single institution long-term follow-up study was carried out in DMD patients with both complete lack of muscle dystrophin and genotyping. An exploratory series (series 1) was used to assess phenotypic heterogeneity and to identify early criteria predicting future outcome; it included 75 consecutive steroid-free patients, longitudinally evaluated for motor, respiratory, cardiac and cognitive functions (median follow-up: 10.5 yrs). A validation series (series 2) was used to test robustness of the selected predictive criteria; it included 34 more routinely evaluated patients (age>12 yrs). Multivariate analysis of series 1 classified 70/75 patients into 4 clusters with distinctive intellectual and motor outcomes: A (early infantile DMD, 20%): severe intellectual and motor outcomes; B (classical DMD, 28%): intermediate intellectual and poor motor outcome; C (moderate pure motor DMD, 22%): normal intelligence and delayed motor impairment; and D (severe pure motor DMD, 30%): normal intelligence and poor motor outcome. Group A patients had the most severe respiratory and cardiac involvement. Frequency of mutations upstream to exon 30 increased from group A to D, but genotype/phenotype correlations were restricted to cognition (IQ>71: OR 7.7, 95%CI 1.6-20.4, p6 at 8 yrs" with "normal or borderline mental status" reliably assigned patients to group C (sensitivity: 1, specificity: 0.94). These criteria were also predictive of "early infantile DMD" and "moderate pure motor DMD" in series 2. CONCLUSIONS/SIGNIFICANCE: DMD can be divided into 4 sub-phenotypes differing by severity of muscle and brain dysfunction. Simple early criteria can be used to include patients with similar outcomes in future therapeutic trials
Synaptic Maturation at Cortical Projections to the Lateral Amygdala in a Mouse Model of Rett Syndrome
Rett syndrome (RTT) is a neuro-developmental disorder caused by loss of function of Mecp2 - methyl-CpG-binding protein 2 - an epigenetic factor controlling DNA transcription. In mice, removal of Mecp2 in the forebrain recapitulates most of behavioral deficits found in global Mecp2 deficient mice, including amygdala-related hyper-anxiety and lack of social interaction, pointing a role of Mecp2 in emotional learning. Yet very little is known about the establishment and maintenance of synaptic function in the adult amygdala and the role of Mecp2 in these processes. Here, we performed a longitudinal examination of synaptic properties at excitatory projections to principal cells of the lateral nucleus of the amygdala (LA) in Mecp2 mutant mice and their wild-type littermates. We first show that during animal life, Cortico-LA projections switch from a tonic to a phasic mode, whereas Thalamo-LA synapses are phasic at all ages. In parallel, we observed a specific elimination of Cortico-LA synapses and a decrease in their ability of generating presynaptic long term potentiation. In absence of Mecp2, both synaptic maturation and synaptic elimination were exaggerated albeit still specific to cortical projections. Surprisingly, associative LTP was unaffected at Mecp2 deficient synapses suggesting that synaptic maintenance rather than activity-dependent synaptic learning may be causal in RTT physiopathology. Finally, because the timing of synaptic evolution was preserved, we propose that some of the developmental effects of Mecp2 may be exerted within an endogenous program and restricted to synapses which maturate during animal life
Clusters of Conserved Beta Cell Marker Genes for Assessment of Beta Cell Phenotype
The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators.Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe
Cancer Genomics Identifies Regulatory Gene Networks Associated with the Transition from Dysplasia to Advanced Lung Adenocarcinomas Induced by c-Raf-1
Background: Lung cancer is a leading cause of cancer morbidity. To improve an understanding of molecular causes of disease a transgenic mouse model was investigated where targeted expression of the serine threonine kinase c-Raf to respiratory epithelium induced initialy dysplasia and subsequently adenocarcinomas. This enables dissection of genetic events associated with precancerous and cancerous lesions. Methodology/Principal Findings: By laser microdissection cancer cell populations were harvested and subjected to whole genome expression analyses. Overall 473 and 541 genes were significantly regulated, when cancer versus transgenic and non-transgenic cells were compared, giving rise to three distinct and one common regulatory gene network. At advanced stages of tumor growth predominately repression of gene expression was observed, but genes previously shown to be upregulated in dysplasia were also up-regulated in solid tumors. Regulation of developmental programs as well as epithelial mesenchymal and mesenchymal endothelial transition was a hall mark of adenocarcinomas. Additionaly, genes coding for cell adhesion, i.e. the integrins and the tight and gap junction proteins were repressed, whereas ligands for receptor tyrosine kinase such as epi- and amphiregulin were up-regulated. Notably, Vegfr- 2 and its ligand Vegfd, as well as Notch and Wnt signalling cascades were regulated as were glycosylases that influence cellular recognition. Other regulated signalling molecules included guanine exchange factors that play a role in an activation of the MAP kinases while several tumor suppressors i.e. Mcc, Hey1, Fat3, Armcx1 and Reck were significantly repressed. Finally, probable molecular switches forcing dysplastic cells into malignantly transformed cells could be identified. Conclusions/Significance: This study provides insight into molecular pertubations allowing dysplasia to progress further to adenocarcinoma induced by exaggerted c-Raf kinase activity
- …