20 research outputs found

    Compliance with corporate governance principles as element of Russian economy investment attractiveness

    Get PDF
    Over the last few years, the concept of corporate governance in relation to Russian economic realities has been used relatively recently. The concept of corporate governance in the economic practice of Russia was synonymous with production management in 1990-2000 At the same time, "good corporate governance" is a set of activities of public companies in order to ensure high demand for their shares and debt securities from portfolio investors. Corporate governance is a means of trust development both in individual companies and in the stock market of the country as a whole, which is of great importance for long-term investment attraction.  According to various global ratings of the countries (for example, to the rating of the financial conglomerate Morgan Stanley, the Russian stock market is classified as an emerging market that provides increased investment returns. The article attempts to determine the main priorities of institutional investors for corporate governance in Russia. The authors come to the conclusion that the development of the corporate governance system is one of the key factors increasing the investment attractiveness of Russian companies. Government regulators take measures to create corporate governance standards, one example of which is the recommendation to use the Corporate Governance Code approved by the Board of Directors of the Bank of Russia in 2014. In fact, the article highlights both positive and negative trends in the Russian practice of corporate governance. It provides the results of opinion polls among investors, which reveal their motivation to make investment decisions in the Russian market

    Development of nanoelectrospray high resolution isotope dilution mass spectrometry for targeted quantitative analysis of urinary metabolites: Application to population profiling and clinical studies

    Get PDF
    ABSTRACT An automated chip-based electrospray platform was used to develop a high-throughput nanoelectrospray high resolution mass spectrometry (nESI-HRMS) method for multiplexed parallel untargeted and targeted quantitative metabolic analysis of the urine samples. The method was demonstrated to be suitable for metabolic analysis of large sample numbers and can be applied to large-scale epidemiological and stratified medicine studies. The method requires a small amount of sample (5 μL of injectable volume containing 250 nL of original sample), and the analysis time for each sample is three minutes per sample to acquire data in both negative and positive ion modes. Identification of metabolites was based on the high resolution accurate mass and tandem mass spectrometry using authentic standards. The method was validated for 8 targeted metabolites and was shown to be precise and accurate. The mean accuracy of individual measurements being of 106% and the intra-and inter-day precision (expressed as relative standard deviations) were 9% and 14%, respectively. Selected metabolites were quantified by standard addition calibration using the stable isotope labelled internal standards in a pooled urine sample, to account for any matrix effect. The multiple point standard addition calibration curves yielded correlation coefficients greater than 0.99, and the linear dynamic range was more than three orders of magnitude. As a proof-of-concept the developed method was applied for targeted quantitative analysis of a set of 101 urine samples obtained from female participants with different pregnancy outcomes. In addition to the specifically targeted metabolites, several other metabolites were quantified relative to the internal standards. Based on the calculated concentrations, some metabolites showed significant differences according to different pregnancy outcomes. The acquired high resolution full-scan data were used for further untargeted fingerprinting and improved the differentiation of urine samples based on pregnancy outcome

    Evidence for partially bound states in cooperative molecular recognition interfaces

    No full text
    A zinc porphyrin equipped with four amide H-bonding sites provides a rigid molecular receptor for the study of cooperative multipoint binding interactions. The interaction of this receptor with a variety of pyridine ligands bearing zero, one, and two H-bonding sites has been studied using UV/vis absorption, 1H and 31P NMR spectroscopy, and isothermal titration calorimetry in five different solvents. The results are analyzed in terms of a bound state that populates an ensemble of different complexes in which zero, one, or two of the potential H-bond interactions are formed. The key parameter that determines the behavior of the system is the product of the association constant for the H-bond interaction, KH, and the effective molarity for the intramolecular interaction, EM. In the system reported here, EM is 0.1−1 M for all of the intramolecular interactions. For strong H-bonds (large KH in nonpolar solvents), all of the interactions are formed in the complex and the fully bound state dominates. In this case, additional binding interactions produce incremental increases in complex stability. However, for weaker H-bonds (small KH in polar solvents), the formation of additional interactions does not lead to an increase in the overall stability of the complex, due to the population of partially bound states

    Steric desolvation enhances the effective molarities of intramolecular H-bonding interactions

    No full text
    Free energy contributions due to intramolecular phosphonate diester–phenol H-bonds have been measured for 20 different supramolecular architectures in cyclohexanone solution. High throughput UV/Vis titrations were used in combination with chemical double mutant cycles to dissect out the contributions of different functional group interactions to the stabilities of over 100 different zinc porphyrin–pyridine ligand complexes. These complexes have previously been characterised in toluene and in 1,1,2,2-tetrachloroethane (TCE) solution. Intramolecular ester–phenol H-bonds that were measured in these less polar solvents are too weak to be detected in cyclohexanone, which is a more competitive solvent. The stability of the intermolecular phosphonate diester–phenol H-bond in cyclohexanone is an order of magnitude lower than in TCE and two orders of magnitude lower than in toluene. As a consequence, only seven of the twenty intramolecular phosphonate diester–phenol interactions that were previously measured in toluene and TCE could be detected in cyclohexanone. The effective molarities (EM) for these intramolecular interactions are different in all three solvents. Determination of the EM accounts for solvent effects on the strengths of the individual H-bonding interactions and the zinc porphyrin–pyridine coordination bond, so the variation in EM with solvent implies that differences in the solvation shells make significant contributions to the overall stabilities of the complexes. The results suggest that steric effects lead to desolvation of bulky polar ligands. This increases the EM values measured in TCE, because ligands that fail to replace the strong interactions made with this solvent are unusually weakly bound compared with ligands that make intramolecular H-bonds

    Quantification of the effect of conformational restriction on supramolecular effective molarities

    No full text
    The association constants for a family of 96 closely related zinc porphyrin–pyridine ligand complexes have been measured in two different solvents, toluene and 1,1,2,2-tetrachloroethane (TCE). The zinc porphyrin receptors are equipped with phenol side arms, which can form intramolecular H-bonds with ester or amide side arms on the pyridine ligands. These association constants were used to construct 64 chemical double mutant cycles, which measure the free energy contributions of intramolecular H-bonding interactions to the overall stability of the complexes. Measurement of association constants for the corresponding intermolecular H-bonding interactions allowed determination of the effective molarities (EM) for the intramolecular interactions. Comparison of ligands that feature amide H-bond acceptors and ester H-bonds at identical sites on the ligand framework show that the values of EM are practically identical. Similarly, the values of EM are practically identical in toluene and in TCE. However, comparison of two ligand series that differ by one degree of torsional freedom shows that the values of EM for the flexible ligands are an order of magnitude lower than for the corresponding rigid ligands. This observation holds for a range of different supramolecular architectures with different degrees of receptor–ligand complementarity and suggests that in general the cost of freezing a rotor in supramolecular complexes is of the order of 5 kJ/mol

    Development of a Rapid Microbore Metabolic Profiling Ultraperformance Liquid Chromatography–Mass Spectrometry Approach for High-Throughput Phenotyping Studies

    No full text
    A rapid gradient microbore ultraperformance liquid chromatography–mass spectrometry (UPLC–MS) method has been developed to provide a high-throughput analytical platform for the metabolic phenotyping of urine from large sample cohorts. The rapid microbore metabolic profiling (RAMMP) approach was based on scaling a conventional reversed-phase UPLC–MS method for urinary profiling from 2.1 mm × 100 mm columns to 1 mm × 50 mm columns, increasing the linear velocity of the solvent, and decreasing the gradient time to provide an analysis time of 2.5 min/sample. Comparison showed that conventional UPLC–MS and rapid gradient approaches provided peak capacities of 150 and 50, respectively, with the conventional method detecting approximately 19 000 features compared to the ∼6 000 found using the rapid gradient method. Similar levels of repeatability were seen for both methods. Despite the reduced peak capacity and the reduction in ions detected, the RAMMP method was able to achieve similar levels of group discrimination as conventional UPLC–MS when applied to rat urine samples obtained from investigative studies on the effects of acute 2-bromophenol and chronic acetaminophen administration. When compared to a direct infusion MS method of similar analysis time the RAMMP method provided superior selectivity. The RAMMP approach provides a robust and sensitive method that is well suited to high-throughput metabonomic analysis of complex mixtures such as urine combined with a 5-fold reduction in analysis time compared with the conventional UPLC–MS method
    corecore