7 research outputs found

    Topological expansion of beta-ensemble model and quantum algebraic geometry in the sectorwise approach

    Get PDF
    We solve the loop equations of the β\beta-ensemble model analogously to the solution found for the Hermitian matrices β=1\beta=1. For \beta=1,thesolutionwasexpressedusingthealgebraicspectralcurveofequation, the solution was expressed using the algebraic spectral curve of equation y^2=U(x).Forarbitrary. For arbitrary \beta,thespectralcurveconvertsintoaSchro¨dingerequation, the spectral curve converts into a Schr\"odinger equation ((\hbar\partial)^2-U(x))\psi(x)=0with with \hbar\propto (\sqrt\beta-1/\sqrt\beta)/N.Thispaperissimilartothesisterpaper I,inparticular,allthemainingredientsspecificforthealgebraicsolutionoftheproblemremainthesame,butherewepresentthesecondapproachtofindingasolutionofloopequationsusingsectorwisedefinitionofresolvents.Beingtechnicallymoreinvolved,itallowsdefiningconsistentlytheBcyclestructureoftheobtainedquantumalgebraiccurve(aDmoduleoftheform. This paper is similar to the sister paper~I, in particular, all the main ingredients specific for the algebraic solution of the problem remain the same, but here we present the second approach to finding a solution of loop equations using sectorwise definition of resolvents. Being technically more involved, it allows defining consistently the B-cycle structure of the obtained quantum algebraic curve (a D-module of the form y^2-U(x),where, where [y,x]=\hbar)andtoconstructexplicitlythecorrelationfunctionsandthecorrespondingsymplecticinvariants) and to construct explicitly the correlation functions and the corresponding symplectic invariants F_h,orthetermsofthefreeenergy,in1/N2, or the terms of the free energy, in 1/N^2-expansion at arbitrary \hbar. The set of "flat" coordinates comprises the potential times tkt_k and the occupation numbers \widetilde{\epsilon}_\alpha.WedefineandinvestigatethepropertiesoftheAandBcycles,formsof1st,2ndand3rdkind,andtheRiemannbilinearidentities.Weusetheseidentitiestofindexplicitlythesingularpartof. We define and investigate the properties of the A- and B-cycles, forms of 1st, 2nd and 3rd kind, and the Riemann bilinear identities. We use these identities to find explicitly the singular part of \mathcal F_0thatdependsexclusivelyon that depends exclusively on \widetilde{\epsilon}_\alpha$.Comment: 58 pages, 7 figure

    Large deviations of the maximal eigenvalue of random matrices

    Full text link
    We present detailed computations of the 'at least finite' terms (three dominant orders) of the free energy in a one-cut matrix model with a hard edge a, in beta-ensembles, with any polynomial potential. beta is a positive number, so not restricted to the standard values beta = 1 (hermitian matrices), beta = 1/2 (symmetric matrices), beta = 2 (quaternionic self-dual matrices). This model allows to study the statistic of the maximum eigenvalue of random matrices. We compute the large deviation function to the left of the expected maximum. We specialize our results to the gaussian beta-ensembles and check them numerically. Our method is based on general results and procedures already developed in the literature to solve the Pastur equations (also called "loop equations"). It allows to compute the left tail of the analog of Tracy-Widom laws for any beta, including the constant term.Comment: 62 pages, 4 figures, pdflatex ; v2 bibliography corrected ; v3 typos corrected and preprint added ; v4 few more numbers adde

    On "Dotsenko-Fateev" representation of the toric conformal blocks

    Full text link
    We demonstrate that the recent ansatz of arXiv:1009.5553, inspired by the original remark due to R.Dijkgraaf and C.Vafa, reproduces the toric conformal blocks in the same sense that the spherical blocks are given by the integral representation of arXiv:1001.0563 with a peculiar choice of open integration contours for screening insertions. In other words, we provide some evidence that the toric conformal blocks are reproduced by appropriate beta-ensembles not only in the large-N limit, but also at finite N. The check is explicitly performed at the first two levels for the 1-point toric functions. Generalizations to higher genera are briefly discussed.Comment: 10 page
    corecore