206 research outputs found

    The therapeutic effect of the neuropeptide hormone somatostatin on Schistosoma mansoni caused liver fibrosis

    Get PDF
    BACKGROUND: The neuropeptide somatostatin is one of the major regulatory peptides in the central nervous system and the digestive tract. Our recent work has delineated an association between fibrosis and low levels of endogenous somatostatin plasma levels in Schistosoma mansoni infected subjects. Based on these results this paper explores the therapeutic potential of somatostatin in a mouse model of hepatic fibrosis associated with S. mansoni infections. METHODS: Groups of outbred Swiss mice were infected with 100 S. mansoni cercariae, infection maintained till weeks 10 or 14, and then somatostatin therapy delivered in two regimens – Either a one or a two-day treatment. All animals were sacrificed one week after therapy and controlled for liver, spleen and total body weight. Circulating somatostatin levels in mice plasma were measured at the time of sacrifice by means of a radio-immuno assay. GraphPad Prism(® )was used for statistical calculations. RESULTS: Somatostatin administration showed little toxicity, probably due to its short half-life. Total liver and spleen weights of S. mansoni infected animals increased over time, with no changes observed due to somatostatin therapy. Total body weights were decreased after infection but were not affected by somatostatin therapy. Snap frozen liver sections were stained with haematoxylin-eosin or Masson's trichrome to study parasite count, hepatocyte status, granuloma size and cellularity. After somatostatin treatment mean egg counts per liver section (43.76 ± 3.56) were significantly reduced as compared to the egg counts in untreated mice after 10 weeks of infection (56.01 ± 3.34) (P = 0.03). Similar significant reduction in parasite egg counts were also observed after somatostatin treatment at 14 weeks of infection (56.62 ± 3.02) as compared to untreated animals (69.82 ± 2.77)(P = 0.006). Fibrosis was assessed from the spectrophotometric determination of tissue hydroxyproline. Infection with S. mansoni caused increased hydroxyproline levels (9.37 ± 0.63 μmol at wk10; 9.65 ± 0.96 μmol at wk14) as compared to uninfected animals (1.06 ± 0.10 μmol). This significant increase in collagen content (P = 0.01; 0.007 respectively) marks the fibrosis observed at these time points. Treatment with somatostatin resulted in a significant decrease in hydroxyproline levels both at wk10 (4.76 ± 0.58 μmol) and at wk14 (5.8 ± 1.13 μmol) (P = 0.01; 0.03 respectively). Endogenous somatostatin levels were increased at wk10 (297 ± 37.24 pg/ml) and wk14 (206 ± 13.30 pg/ml) of infection as compared to uninfected mice (119 ± 11.99 pg/ml) (P = 0.01; 0.008 respectively). Circulating somatostatin levels in infected animals were not significantly affected by somatostatin treatment. Hepatocyte status remained unaltered and granulomas were not remarkably changed in size or cellularity. CONCLUSION: Our experiments reveal an antifibrotic effect of somatostatin in schistosomiasis. We have previously shown that the somatostatin receptors SSTR2 and SSTR3 are present on the parasite egg and worms. We therefore hypothesize that somatostatin reduces either the number of parasite eggs or the secretion of fibrosis inducing-mediators. Our data suggest somatostatin may have therapeutic potential in S. mansoni mediated liver pathology

    Phenotypic and genotypic monitoring of Schistosoma mansoni in Tanzanian schoolchildren five years into a preventative chemotherapy national control programme

    Get PDF
    We conducted combined in vitro PZQ efficacy testing with population genetic analyses of S. mansoni collected from children from two schools in 2010, five years after the introduction of a National Control Programme. Children at one school had received four annual PZQ treatments and the other school had received two mass treatments in total. We compared genetic differentiation, indices of genetic diversity, and estimated adult worm burden from parasites collected in 2010 with samples collected in 2005 (before the control programme began) and in 2006 (six months after the first PZQ treatment). Using 2010 larval samples, we also compared the genetic similarity of those with high and low in vitro sensitivity to PZQ

    Co-ordinated Gene Expression in the Liver and Spleen during Schistosoma japonicum Infection Regulates Cell Migration

    Get PDF
    Determining the molecular events induced in the spleen during schistosome infection is an essential step in better understanding the immunopathogenesis of schistosomiasis and the mechanisms by which schistosomes modulate the host immune response. The present study defines the transcriptional and cellular events occurring in the murine spleen during the progression of Schistosoma japonicum infection. Additionally, we compared and contrasted these results with those we have previously reported for the liver. Microarray analysis combined with flow cytometry and histochemistry demonstrated that transcriptional changes occurring in the spleen were closely related to changes in cellular composition. Additionally, the presence of alternatively activated macrophages, as indicated by up-regulation of Chi3l3 and Chi3l4 and expansion of F4/80+ macrophages, together with enhanced expression of the immunoregulatory genes ANXA1 and CAMP suggests the spleen may be an important site for the control of S. japonicum-induced immune responses. The most striking difference between the transcriptional profiles of the infected liver and spleen was the contrasting expression of chemokines and cell adhesion molecules. Lymphocyte chemokines, including the homeostatic chemokines CXCL13, CCL19 and CCL21, were significantly down-regulated in the spleen but up-regulated in the liver. Eosinophil (CCL11, CCL24), neutrophil (CXCL1) and monocyte (CXCL14, CCL12) chemokines and the cell adhesion molecules VCAM1, NCAM1, PECAM1 were up-regulated in the liver but unchanged in the spleen. Chemokines up-regulated in both organs were expressed at significantly higher levels in the liver. Co-ordinated expression of these genes probably contributes to the development of a chemotactic signalling gradient that promotes recruitment of effector cells to the liver, thereby facilitating the development of hepatic granulomas and fibrosis. Together these data provide, for the first time, a comprehensive overview of the molecular events occurring in the spleen during schistosomiasis and will substantially further our understanding of the local and systemic mechanisms driving the immunopathogenesis of this disease

    Effect of Schistosoma mansoni Infection on Innate and HIV-1-Specific T-Cell Immune Responses in HIV-1-Infected Ugandan Fisher Folk.

    Get PDF
    In Uganda, fisher folk have HIV prevalence rates, about four times higher than the national average, and are often coinfected with Schistosoma mansoni. We hypothesized that innate immune responses and HIV-specific Th1 immune responses might be downmodulated in HIV/S. mansoni-coinfected individuals compared with HIV+/S. mansoni-negative individuals. We stimulated whole blood with innate receptor agonists and analyzed supernatant cytokines by Luminex. We evaluated HIV-specific responses by intracellular cytokine staining for IFN-γ, IL-2, and TNF-α. We found that the plasma viral load and CD4 count were similar between the HIV+SM+ and HIV+SM- individuals. In addition, the TNF-α response to the imidazoquinoline compound CL097 and β-1, 3-glucan (curdlan), was significantly higher in HIV/S. mansoni-coinfected individuals compared with HIV only-infected individuals. The frequency of HIV-specific IFN-γ+IL-2-TNF-α- CD8 T cells and IFN-γ+IL-2-TNF-α+ CD4 T cells was significantly higher in HIV/S. mansoni-coinfected individuals compared with HIV only-infected individuals. These findings do not support the hypothesis that S. mansoni downmodulates innate or HIV-specific Th1 responses in HIV/S. mansoni-coinfected individuals

    Differential Expression of Chemokine and Matrix Re-Modelling Genes Is Associated with Contrasting Schistosome-Induced Hepatopathology in Murine Models

    Get PDF
    The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the complexities associated with chronic human schistosomiasis

    Negative Regulation of Schistosoma japonicum Egg-Induced Liver Fibrosis by Natural Killer Cells

    Get PDF
    The role of natural killer (NK) cells in infection-induced liver fibrosis remains obscure. In this study, we elucidated the effect of NK cells on Schistosoma japonicum (S. japonicum) egg-induced liver fibrosis. Liver fibrosis was induced by infecting C57BL/6 mice with 18–20 cercariae of S. japonicum. Anti-ASGM1 antibody was used to deplete NK cells. Toll-like receptor 3 ligand, polyinosinic-polycytidylic acid (poly I∶C) was used to enhance the activation of NK cells. Results showed that NK cells were accumulated and activated after S. japonicum infection, as evidenced by the elevation of CD69 expression and IFN-γ production. Depletion of NK cells markedly enhanced S. japonicum egg-induced liver fibrosis. Administration of poly I∶C further activated NK cells to produce IFN-γ and attenuated S. japonicum egg-induced liver fibrosis. The observed protective effect of poly I∶C on liver fibrosis was diminished through depletion of NK cells. Disruption of IFN-γ gene enhanced liver fibrosis and partially abolished the suppression of liver fibrosis by poly I∶C. Moreover, expression of retinoic acid early inducible 1 (RAE 1), the NKG2D ligand, was detectable at high levels on activated hepatic stellate cells derived from S. japonicum-infected mice, which made them more susceptible to hepatic NK cell killing. In conclusion, our findings suggest that the activated NK cells in the liver after S. japonicum infection negatively regulate egg-induced liver fibrosis via producing IFN-γ, and killing activated stellate cells

    Predicting the Impact of Long-Term Temperature Changes on the Epidemiology and Control of Schistosomiasis: A Mechanistic Model

    Get PDF
    , the causative agent of schistosomiasis in humans.The model showed that the impact of temperature on disease prevalence and abundance is not straightforward; the mean infection burden in humans increases up to 30°C, but then crashes at 35°C, primarily due to increased mortalities of the snail intermediate host. In addition, increased temperatures changed the dynamics of disease from stable, endemic infection to unstable, epidemic cycles at 35°C. However, the prevalence of infection was largely unchanged by increasing temperatures. Temperature increases also affected the response of the model to changes in each parameter, indicating certain control strategies may become less effective with local temperature changes. At lower temperatures, the most effective single control strategy is to target the adult parasites through chemotherapy. However, as temperatures increase, targeting the snail intermediate hosts, for example through molluscicide use, becomes more effective. will not respond to increased temperatures in a linear fashion, and the optimal control strategy is likely to change as temperatures change. It is only through a mechanistic approach, incorporating the combined effects of temperature on all stages of the life-cycle, that we can begin to predict the consequences of climate change on the incidence and severity of such diseases
    corecore