1,442 research outputs found
Probing the Role of the Barrier Layer in Magnetic Tunnel Junction Transport
Magnetic tunnel junctions with a ferrimagnetic barrier layer have been
studied to understand the role of the barrier layer in the tunneling process -
a factor that has been largely overlooked until recently. Epitaxial oxide
junctions of highly spin polarized La0.7Sr0.3MnO3 and Fe3O4 electrodes with
magnetic NiMn2O4 (NMO) insulating barrier layers provide a magnetic tunnel
junction system in which we can probe the effect of the barrier by comparing
junction behavior above and below the Curie temperature of the barrier layer.
When the barrier is paramagnetic, the spin polarized transport is dominated by
interface scattering and surface spin waves; however, when the barrier is
ferrimagnetic, spin flip scattering due to spin waves within the NMO barrier
dominates the transport.Comment: 10 pages, 3 figure
Extremal Optimization at the Phase Transition of the 3-Coloring Problem
We investigate the phase transition of the 3-coloring problem on random
graphs, using the extremal optimization heuristic. 3-coloring is among the
hardest combinatorial optimization problems and is closely related to a 3-state
anti-ferromagnetic Potts model. Like many other such optimization problems, it
has been shown to exhibit a phase transition in its ground state behavior under
variation of a system parameter: the graph's mean vertex degree. This phase
transition is often associated with the instances of highest complexity. We use
extremal optimization to measure the ground state cost and the ``backbone'', an
order parameter related to ground state overlap, averaged over a large number
of instances near the transition for random graphs of size up to 512. For
graphs up to this size, benchmarks show that extremal optimization reaches
ground states and explores a sufficient number of them to give the correct
backbone value after about update steps. Finite size scaling gives
a critical mean degree value . Furthermore, the
exploration of the degenerate ground states indicates that the backbone order
parameter, measuring the constrainedness of the problem, exhibits a first-order
phase transition.Comment: RevTex4, 8 pages, 4 postscript figures, related information available
at http://www.physics.emory.edu/faculty/boettcher
Jamming Model for the Extremal Optimization Heuristic
Extremal Optimization, a recently introduced meta-heuristic for hard
optimization problems, is analyzed on a simple model of jamming. The model is
motivated first by the problem of finding lowest energy configurations for a
disordered spin system on a fixed-valence graph. The numerical results for the
spin system exhibit the same phenomena found in all earlier studies of extremal
optimization, and our analytical results for the model reproduce many of these
features.Comment: 9 pages, RevTex4, 7 ps-figures included, as to appear in J. Phys. A,
related papers available at http://www.physics.emory.edu/faculty/boettcher
Exhaustive enumeration unveils clustering and freezing in random 3-SAT
We study geometrical properties of the complete set of solutions of the
random 3-satisfiability problem. We show that even for moderate system sizes
the number of clusters corresponds surprisingly well with the theoretic
asymptotic prediction. We locate the freezing transition in the space of
solutions which has been conjectured to be relevant in explaining the onset of
computational hardness in random constraint satisfaction problems.Comment: 4 pages, 3 figure
Activity interventions to improve the experience of care in hospital for people living with dementia: a systematic review
Background: An increasingly high number of patients admitted to hospital have dementia. Hospital environments can be particularly confusing and challenging for people living with dementia (Plwd) impacting their wellbeing and the ability to optimize their care. Improving the experience of care in hospital has been recognized as a priority, and non-pharmacological interventions including activity interventions have been associated with improved wellbeing and behavioral outcomes for Plwd in other settings. This systematic review aimed at evaluating the effectiveness of activity interventions to improve experience of care for Plwd in hospital.
Methods: Systematic searches were conducted in 16 electronic databases up to October 2019. Reference lists of included studies and forward citation searching were also conducted. Quantitative studies reporting comparative data for activity interventions delivered to Plwd aiming to improve their experience of care in hospital were included. Screening for inclusion, data extraction and quality appraisal were performed independently by two reviewers with discrepancies resolved by discussion with a third where necessary. Standardized mean differences (SMDs) were calculated where possible to support narrative statements and aid interpretation.
Results: Six studies met the inclusion criteria (one randomized and five non-randomized uncontrolled studies) including 216 Plwd. Activity interventions evaluated music, art, social, psychotherapeutic, and combinations of tailored activities in relation to wellbeing outcomes. Although studies were generally underpowered, findings indicated beneficial effects of activity interventions with improved mood and engagement of Plwd while in hospital, and reduced levels of responsive behaviors. Calculated SMDs ranged from very small to large but were mostly statistically non-significant.
Conclusions: The small number of identified studies indicate that activity-based interventions implemented in hospitals may be effective in improving aspects of the care experience for Plwd. Larger well-conducted studies are needed to fully evaluate the potential of this type of non-pharmacological intervention to improve experience of care in hospital settings, and whether any benefits extend to staff wellbeing and the wider ward environment.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.Funding was provided by the Health Services and Delivery Research programme of the National Institute for Health Research, and the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) South West Peninsula, now recommissioned as NIHR Applied Research Collaboration (ARC) South West Peninsula. The funding body had no role in design of the study, analysis and interpretation of the data or writing of the manuscript.published version, accepted version, submitted versio
The dynamics of proving uncolourability of large random graphs I. Symmetric Colouring Heuristic
We study the dynamics of a backtracking procedure capable of proving
uncolourability of graphs, and calculate its average running time T for sparse
random graphs, as a function of the average degree c and the number of vertices
N. The analysis is carried out by mapping the history of the search process
onto an out-of-equilibrium (multi-dimensional) surface growth problem. The
growth exponent of the average running time is quantitatively predicted, in
agreement with simulations.Comment: 5 figure
Diagnosis of tuberculosis in groups of badgers: an exploration of the impact of trapping efficiency, infection prevalence and the use of multiple tests
Accurate detection of infection with Mycobacterium bovis in live badgers would enable targeted tuberculosis control. Practical challenges in sampling wild badger populations mean that diagnosis of infection at the group (rather than the individual) level is attractive. We modelled data spanning 7 years containing over 2000 sampling events from a population of wild badgers in southwest England to quantify the ability to correctly identify the infection status of badgers at the group level. We explored the effects of variations in: (1) trapping efficiency; (2) prevalence of M. bovis; (3) using three diagnostic tests singly and in combination with one another; and (4) the number of badgers required to test positive in order to classify groups as infected. No single test was able to reliably identify infected badger groups if 80% sensitive, at least 94% specific, and able to be performed rapidly in the field
Random Costs in Combinatorial Optimization
The random cost problem is the problem of finding the minimum in an
exponentially long list of random numbers. By definition, this problem cannot
be solved faster than by exhaustive search. It is shown that a classical
NP-hard optimization problem, number partitioning, is essentially equivalent to
the random cost problem. This explains the bad performance of heuristic
approaches to the number partitioning problem and allows us to calculate the
probability distributions of the optimum and sub-optimum costs.Comment: 4 pages, Revtex, 2 figures (eps), submitted to PR
Extremal Optimization for Graph Partitioning
Extremal optimization is a new general-purpose method for approximating
solutions to hard optimization problems. We study the method in detail by way
of the NP-hard graph partitioning problem. We discuss the scaling behavior of
extremal optimization, focusing on the convergence of the average run as a
function of runtime and system size. The method has a single free parameter,
which we determine numerically and justify using a simple argument. Our
numerical results demonstrate that on random graphs, extremal optimization
maintains consistent accuracy for increasing system sizes, with an
approximation error decreasing over runtime roughly as a power law t^(-0.4). On
geometrically structured graphs, the scaling of results from the average run
suggests that these are far from optimal, with large fluctuations between
individual trials. But when only the best runs are considered, results
consistent with theoretical arguments are recovered.Comment: 34 pages, RevTex4, 1 table and 20 ps-figures included, related papers
available at http://www.physics.emory.edu/faculty/boettcher
- …