19 research outputs found

    Energy Efficient, Cost-Effective Power and Co-Generation Technologies: Techno-Environmental Analysis

    Get PDF
    Development of energy solutions for addressing grid resiliency and energy efficiency while lowering greenhouse gas emissions is critical in today’s energy scenario. Chemical energy provides on demand power. Cogeneration technologies offer numerous benefits in meeting the growing energy demand while lowering the impact on environment. Utilization of waste heat from prime movers in conjunction with energy efficient heat pumps and renewable photovoltaics is an attractive approach. Efficient utilization of available resources to support current and future building energy needs targeting grid resiliency, energy and environmental security via co-generation approaches is the focus of this study. A detailed techno-environmental analysis of hybrid system configurations consisting of conventional and emerging technologies utilizing natural gas, electric grid, and renewable power resources along with heat recovery systems and heat pump technologies are analyzed and presented. The key objective is to present integrated system configurations and thermodynamic analysis of various co-generation systems suitable for providing building energy. Design solutions targeting low carbon footprint and high energy efficiency are presente

    Self-powered Heating: Efficiency Analysis

    Get PDF
    Conventional fuel-fired heating devices such as furnaces, boilers, and water heaters have fuel efficiency less than 100% on the basis of higher heating value. They also require electricity from the electric grid to power parasitic loads such as blowers, pumps, fans, and ignitors. The primary energy efficiency of the device accounts for both fuel used on-site and primary energy used off-site to produce electric power used by the device. This work compares conventional fuel-fired heating devices to two types of self-powered devices. A self-powered device (SPD) integrates a power cycle onboard to eliminate consumption of grid electricity. We assume that all heat rejected by the onboard power cycle is added to the process fluid, so that, compared with a conventional device, the same amount of heat is provided to the process fluid and the same amount of fuel is consumed, but grid electricity consumption is eliminated. The first SPD type is the basic one: exactly the electricity required is generated. The second type considered is the SPD with heat pump (SPD-HP), in which the power cycle generates more electricity than needed for parasitic loads, and the excess electricity is used to power a heat pump. The heat pump extracts additional heat from the ambient to boost efficiency. Both SPD and SPD-HP self-consume all the generated electricity, in contrast to combined heat and power (CHP) systems that export electricity. In this work, equations are derived to express the efficiency of three classes of heating devices: conventional (consuming grid electricity), self-powered (consuming no grid electricity), and self-powered with heat pump. The efficiency of each is derived as a function of up to six factors: (1) the fraction of combustion heat captured, (2) the rate of parasitic power consumption, (3) the fraction of electric energy dissipated as useful heat, (4) the power cycle conversion efficiency, (5) the grid efficiency, when applicable, and (6) the heat pump COP, when applicable. Scenarios are identified in which it is possible to achieve efficiency greater than 100% on a higher heating value basis. Plausible configurations using existing technology options are outlined

    Material Selection and Sizing of a Thermoelectric Generator (TEG) for Power Generation in a Self-Powered Heating System

    Get PDF
    By employing the high temperature heat source to directly generate the electricity needed to power auxiliary systems in a natural gas furnace, boiler or hot water heater, a “self-powered” heating system can provide several benefits. Compared with a traditional furnace, boiler or hot water heater, when overall fuel utilization is kept constant, the self-powered system will have a higher primary energy efficiency, lower operating costs, and dramatically improved building safety and resilience during electric grid outages. Furthermore, a self-powered heating system only has a single utility connection – natural gas, without an electric connection – thus simplifying installation. A thermoelectric generator can be used for direct energy conversion of thermal energy to electricity with no moving parts, which offers a very simple means to provide power for the self-powered heating system, and the operation is without noise or vibration and can thus provide a very long system life. This paper provides an analysis focused on materials selection and the thermal power requirements for a thermoelectric generator (TEG) for use in a self-powered heating system. The dimensionless figure of merit for thermoelectric materials, zT, is used to estimate the optimal efficiency that can be achieved with a TEG to produce the electric power required in such an application. Comparisons of the predicted efficiency, the required heat transfer rate to the TEG and the heat transfer area needed for sustained operation under thermal conditions relevant to the self-powered heating application are made for several potential thermoelectric materials. This analysis was used to develop system requirements for a self-powered hot water heater using a TEG for electric power generation

    Hydrogen and the Global Energy Transition—Path to Sustainability and Adoption across All Economic Sectors

    No full text
    This perspective article delves into the critical role of hydrogen as a sustainable energy carrier in the context of the ongoing global energy transition. Hydrogen, with its potential to decarbonize various sectors, has emerged as a key player in achieving decarbonization and energy sustainability goals. This article provides an overview of the current state of hydrogen technology, its production methods, and its applications across diverse industries. By exploring the challenges and opportunities associated with hydrogen integration, we aim to shed light on the pathways toward achieving a sustainable hydrogen economy. Additionally, the article underscores the need for collaborative efforts among policymakers, industries, and researchers to overcome existing hurdles and unlock the full potential of hydrogen in the transition to a low-carbon future. Through a balanced analysis of the present landscape and future prospects, this perspective article aims to contribute valuable insights to the discourse surrounding hydrogen’s role in the global energy transition

    Opportunities for Catalytic Reactions and Materials in Buildings

    No full text
    Residential and commercial buildings are responsible for over 30% of global final energy consumption and accounts for ~40% of annual direct and indirect greenhouse gas emissions. Energy efficient and sustainable technologies are necessary to not only lower the energy footprint but also lower the environmental burden. Many proven and emerging technologies are being pursued to meet the ever-increasing energy demand. Catalytic science has a significant new role to play in helping address sustainable energy challenges, particularly in buildings, compared to transportation and industrial sectors. Thermally driven heat pumps, dehumidification, cogeneration, thermal energy storage, carbon capture and utilization, emissions suppression, waste-to-energy conversion, and corrosion prevention technologies can tap into the advantages of catalytic science in realizing the full potential of such approaches, quickly, efficiently, and reliably. Catalysts can help increase energy conversion efficiency in building related technologies but must utilize low cost, easily available and easy-to-manufacture materials for large scale deployment. This entry presents a comprehensive overview of the impact of each building technology area on energy demand and environmental burden, state-of-the-art of catalytic solutions, research, and development opportunities for catalysis in building technologies, while identifying requirements, opportunities, and challenges

    Role of On-Site Generation in Carbon Emissions and Utility Bill Savings under Different Electric Grid Scenarios

    No full text
    Energy-efficient and sustainable technologies are necessary to lower energy and carbon footprints. Many technologies are being pursued to meet the increasing energy demand in buildings. An attractive option is efficient utilization of available energy resources, including renewables, to support current and future building energy needs while targeting grid resiliency, energy, and environmental security at an affordable cost via on-site cogeneration-based approaches. This must include energy-efficient technologies with lower greenhouse gas emissions and optimized cost, performance, and reliability. This paper presents the economic and environmental benefits associated with power technologies such as thermionics and solid oxide fuel cells. Hybrid configurations consisting of heat pumps, power systems, and renewable photovoltaics in cogeneration and trigeneration modes of operation are presented. The role of such technologies in lowering CO2 emissions while improving energy resiliency and serving the needs of underprivileged communities is discussed. The key barriers of affordability and potential solutions for large-scale implementation of these promising technologies are reviewed. Case studies demonstrating the influence of power rating, electrical efficiency, design configuration, carbon dioxide intensity of the grid, and fuel on annual greenhouse gas emissions are presented for residential and commercial buildings

    Decarbonization of Residential Building Energy Supply: Impact of Cogeneration System Performance on Energy, Environment, and Economics

    No full text
    Electrical and thermal loads of residential buildings present a unique opportunity for onsite power generation, and concomitant thermal energy generation, storage, and utilization, to decrease primary energy consumption and carbon dioxide intensity. This approach also improves resiliency and ability to address peak load burden effectively. Demand response programs and grid-interactive buildings are also essential to meet the energy needs of the 21st century while addressing climate impact. Given the significance of the scale of building energy consumption, this study investigates how cogeneration systems influence the primary energy consumption and carbon footprint in residential buildings. The impact of onsite power generation capacity, its electrical and thermal efficiency, and its cost, on total primary energy consumption, equivalent carbon dioxide emissions, operating expenditure, and, most importantly, thermal and electrical energy balance, is presented. The conditions at which a cogeneration approach loses its advantage as an energy efficient residential resource are identified as a function of electrical grid’s carbon footprint and primary energy efficiency. Compared to a heat pump heating system with a coefficient of performance (COP) of three, a 0.5 kW cogeneration system with 40% electrical efficiency is shown to lose its environmental benefit if the electrical grid’s carbon dioxide intensity falls below 0.4 kg CO2 per kWh electricity
    corecore