11 research outputs found

    Broad and potent cross clade neutralizing antibodies with multiple specificities in the plasma of HIV-1 subtype C infected individuals.

    Get PDF
    Broadly Cross clade Neutralizing (BCN) antibodies are recognized as potential therapeutic tools and leads for the design of a vaccine that can protect human beings against various clades of Human Immunodeficiency Virus (HIV). In the present study, we screened plasma of 88 HIV-1 infected ART naïve individuals for their neutralization potential using a standard panel of 18 pseudoviruses belonging to different subtypes and different levels of neutralization. We identified 12 samples with good breadth of neutralization (neutralized >90% of the viruses). Four of these samples neutralized even the difficult-to-neutralize tier-3 pseudoviruses with great potency (GMT > 600). Analysis of neutralization specificities indicated that four samples had antibodies with multiple epitope binding specificities, viz. CD4-binding site (CD4BS), glycans in the V1/V2 and V3 regions and membrane proximal external region (MPER). Our findings indicate the strong possibility of identifying highly potent bNAbs with known or novel specificities from HIV-1 subtype C infected individuals from India that can be exploited as therapeutic tools or lead molecules for the identification of potential epitopes for design of a protective HIV-1 vaccine

    Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy.

    Get PDF
    The ART program in low- and middle-income countries (LMIC) like India, follows a public health approach with a standardized regimen for all people living with HIV (PLHIV). Based on the evidence from high-income countries (HIC), the risk of an enhanced, and accentuated onset of premature-aging or age-related diseases has been observed in PLHIV. However, very limited data is available on residual inflammation and immune activation in the populations who are on first-generation anti-HIV drugs like zidovudine and lamivudine that have more toxic side effects. Therefore, the aim of the present study was to evaluate the levels of systemic inflammation and understand the risk of age-associated diseases in PLHIV on long-term suppressive ART using a large number of biomarkers of inflammation and immune activation. Blood samples were obtained from therapy naïve PLHIV (Pre-ART, = 43), PLHIV on ART for >5 years (ART, = 53), and HIV-negative healthy controls (HIVNC, = 41). Samples were analyzed for 92 markers of inflammation, sCD14, sCD163, and telomere length. Several statistical tests were performed to compare the groups under study. Multivariate linear regression was used to investigate the associations. Despite a median duration of 8 years of successful ART, sCD14 ( < 0.001) and sCD163 ( = 0.04) levels continued to be significantly elevated in ART group as compared to HIVNC. Eleven inflammatory markers, including 4E-BP1, ADA, CCL23, CD5, CD8A, CST5, MMP1, NT3, SLAMF1, TRAIL, and TRANCE, were found to be significantly different ( < 0.05) between the groups. Many of these markers are associated with age-related co-morbidities including cardiovascular disease, neurocognitive decline and some of these markers are being reported for the first time in the context of HIV-induced inflammation. Linear regression analysis showed a significant negative association between HIV-1-positivity and telomere length ( < 0.0001). In ART-group CXCL1 ( = 0.048) and TGF-α ( = 0.026) showed a significant association with the increased telomere length and IL-10RA was significantly associated with decreased telomere length ( = 0.042). This observation warrants further mechanistic studies to generate evidence to highlight the need for enhanced treatment monitoring and special interventions in HIV-infected individuals

    Evolution of Neutralization Response in HIV-1 Subtype C-Infected Individuals Exhibiting Broad Cross-Clade Neutralization of HIV-1 Strains

    Get PDF
    Strain-specific neutralizing antibodies develop in all human immunodeficiency virus type 1 (HIV-1)-infected individuals. However, only 10-30% of infected individuals produce broadly neutralizing antibodies (bNAbs). Identification and characterization of these bNAbs and understanding their evolution dynamics are critical for obtaining useful clues for the development of an effective HIV vaccine. Very recently, we published a study in which we identified 12 HIV-1 subtype C-infected individuals from India whose plasma showed potent and broad cross-clade neutralization (BCN) ability (1). In the present study, we report our findings on the evolution of host bNAb response over a period of 4 years in a subset of these individuals. Three of the five individuals (NAB033, NAB059, and NAB065) demonstrated a significant increase (p < 0.05) in potency. Interestingly, two of the three samples also showed a significant increase in CD4 binding site-specific antibody response, maintained stable CD4+ T cell counts (> 350 cells/mm(3)) and continued to remain ART-naive for more than 10 years after initial diagnosis, implying a strong clinical correlation with the development and evolution of broadly neutralizing antibody response against HIV-1

    Structure-guided changes at the V2 apex of HIV-1 clade C trimer enhance elicitation of autologous neutralizing and broad V1V2-scaffold antibodies

    No full text
    HIV-1 clade C envelope immunogens that elicit both neutralizing and non-neutralizing V1V2-scaffold-specific antibodies (protective correlates from RV144 human trial) are urgently needed due to the prevalence of this clade in the most impacted regions worldwide. To achieve this, we introduce structure-guided changes followed by consensus-C-sequence-guided optimizations at the V2 region to generate UFO-v2-RQH173 trimer. This improves the abundance of well-formed trimers. Following the immunization of rabbits, the wild-type protein fails to elicit any autologous neutralizing antibodies, but UFO-v2-RQH173 elicits both autologous neutralizing and broad V1V2-scaffold antibodies. The variant with a 173Y modification in the V2 region, most prevalent among HIV-1 sequences, shows decreased ability in displaying a native-like V1V2 epitope with time in vitro and elicited antibodies with lower neutralizing and higher V1V2-scaffold activities. Our results identify a stabilized clade C trimer capable of eliciting improved neutralizing and V1V2-scaffold antibodies and reveal the importance of the V2 region in tuning this

    Light chain of a public SARS-CoV-2 class-3 antibody modulates neutralization against Omicron

    No full text
    Summary: The pairing of antibody genes IGHV2-5/IGLV2-14 is established as a public immune response that potently cross-neutralizes SARS-CoV-2 variants, including Omicron, by targeting class-3/RBD-5 epitopes in the receptor binding domain (RBD). LY-CoV1404 (bebtelovimab) exemplifies this, displaying exceptional potency against Omicron sub-variants up to BA.5. Here, we report a human antibody, 002-S21B10, encoded by the public clonotype IGHV2-5/IGLV2-14. While 002-S21B10 neutralized key SARS-CoV-2 variants, it did not neutralize Omicron, despite sharing >92% sequence similarity with LY-CoV1404. The structure of 002-S21B10 in complex with spike trimer plus structural and sequence comparisons with LY-CoV1404 and other IGHV2-5/IGLV2-14 antibodies revealed significant variations in light-chain orientation, paratope residues, and epitope-paratope interactions that enable some antibodies to neutralize Omicron but not others. Confirming this, replacing the light chain of 002-S21B10 with the light chain of LY-CoV1404 restored 002-S21B10’s binding to Omicron. Understanding such Omicron evasion from public response is vital for guiding therapeutics and vaccine design

    data_sheet_1.DOCX

    No full text
    <p>Strain-specific neutralizing antibodies develop in all human immunodeficiency virus type 1 (HIV-1)-infected individuals. However, only 10–30% of infected individuals produce broadly neutralizing antibodies (bNAbs). Identification and characterization of these bNAbs and understanding their evolution dynamics are critical for obtaining useful clues for the development of an effective HIV vaccine. Very recently, we published a study in which we identified 12 HIV-1 subtype C-infected individuals from India whose plasma showed potent and broad cross-clade neutralization (BCN) ability (1). In the present study, we report our findings on the evolution of host bNAb response over a period of 4 years in a subset of these individuals. Three of the five individuals (NAB033, NAB059, and NAB065) demonstrated a significant increase (p < 0.05) in potency. Interestingly, two of the three samples also showed a significant increase in CD4 binding site-specific antibody response, maintained stable CD4+ T cell counts (>350 cells/mm<sup>3</sup>) and continued to remain ART-naïve for more than 10 years after initial diagnosis, implying a strong clinical correlation with the development and evolution of broadly neutralizing antibody response against HIV-1.</p
    corecore