46 research outputs found

    Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology

    Get PDF
    BACKGROUND: Positron emission tomography (PET) may be useful for defining the gross tumour volume for radiation treatment planning and for response monitoring of non-small cell lung cancer (NSCLC) patients. The purpose of this study was to compare tumour sizes obtained from CT- and various more commonly available PET-based tumour delineation methods to pathology findings. METHODS: Retrospective non-respiratory gated whole body [(18)F]-fluoro-2-deoxy-D-glucose PET/CT studies from 19 NSCLC patients were used. Several (semi-)automatic PET-based tumour delineation methods and manual CT-based delineation were used to assess the maximum tumour diameter. RESULTS: 50%, adaptive 41% threshold-based and contrast-oriented delineation methods showed good agreement with pathology after removing two outliers (R(2)=0.82). An absolute SUV threshold of 2.5 also showed a good agreement with pathology after the removal of 5 outliers (R(2): 0.79), but showed a significant overestimation in the maximum diameter (19.8 mm, p<0.05). Adaptive 50%, relative threshold level and gradient-based methods did not show any outliers, provided only small, non-significant differences in maximum tumour diameter (<4.7 mm, p>0.10), and showed fair correlation (R(2)>0.62) with pathology. Although adaptive 70% threshold-based methods showed underestimation compared to pathology (36%), it provided the best precision (SD: 14%) together with good correlation (R(2)=0.81). Good correlation between CT delineation and pathology was observed (R(2)=0.77). However, CT delineation showed a significant overestimation compared with pathology (3.8 mm, p<0.05). CONCLUSIONS: PET-based tumour delineation methods provided tumour sizes in agreement with pathology and may therefore be useful to define the (metabolically most) active part of the tumour for radiotherapy and response monitoring purposes

    Dual-Phase PET-CT to Differentiate [F-18]Fluoromethylcholine Uptake in Reactive and Malignant Lymph Nodes in Patients with Prostate Cancer

    Get PDF
    PURPOSE: To investigate whether time-trends of enhanced [(18)F]Fluoromethylcholine ([(18)F]FCH) in lymph nodes (LN) of prostate cancer (PCa) patients can help to discriminate reactive from malignant ones, and whether single time point standardized uptake value (SUV) measurements also suffice. PROCEDURES: 25 PCa patients with inguinal (presumed benign) and enlarged pelvic LN (presumed malignant) showing enhanced [(18)F]FCH uptake at dual-phase PET-CT were analyzed. Associations between LN status (benign versus malignant) and SUV(max) and SUV(meanA50), determined at 2 min (early) and 30 min (late) post injection, were assessed. We considered two time-trends of [(18)F]FCH uptake: type A (SUV early &gt; SUV late) and type B (SUV late ≥ SUV early). Histopathology and/or follow-up were used to confirm the assumption that LN with type A pattern are benign, and LN with type B pattern malignant. RESULTS: Analysis of 54 nodes showed that LN status, time-trends, and 'late' (30 min p.i.) SUV(max) and SUV(meanA50) parameters were strongly associated (P&lt;0.0001). SUV(max) relative difference was the best LN status predictor. All but one inguinal LN showed a decreasing [(18)F]FCH uptake over time (pattern A), while 95% of the pelvic nodes presented a stable or increasing uptake (pattern B) type. CONCLUSIONS: Time-trends of enhanced [(18)F]FCH uptake can help to characterize lymph nodes in prostate cancer patients. Single time-point SUV measurements, 30 min p.i., may be a reasonable alternative for predicting benign versus malignant status of lymph nodes, but this remains to be validated in non-enlarged pelvic lymph nodes

    Quantification and Tumour Delineation in PET

    Get PDF
    Lammertsma, A.A. [Promotor]Boellaard, R. [Copromotor]Velden, F.H.P. van [Copromotor

    Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies

    Get PDF
    PURPOSE: Standardized uptake values (SUV) are commonly used for quantification of whole-body [(18)F]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) studies. Changes in SUV following therapy, however, only provide a proper measure of response in case of homogeneous FDG uptake in the tumour. The purpose of this study was therefore to implement and characterize a method that enables quantification of heterogeneity in tumour FDG uptake. METHODS: Cumulative SUV-volume histograms (CSH), describing % of total tumour volume above % threshold of maximum SUV (SUV(max)), were calculated. The area under a CSH curve (AUC) is a quantitative index of tumour uptake heterogeneity, with lower AUC corresponding to higher degrees of heterogeneity. Simulations of homogeneous and heterogeneous responses were performed to assess the value of AUC-CSH for measuring uptake and/or response heterogeneity. In addition, partial volume correction and image denoising was applied prior to calculating AUC-CSH. Finally, the method was applied to a number of human FDG scans. RESULTS: Partial volume correction and noise reduction improved CSH curves. Both simulations and clinical examples showed that AUC-CSH values corresponded with level of tumour heterogeneity and/or heterogeneity in response. In contrast, this correspondence was not seen with SUV(max) alone. The results indicate that the main advantage of AUC-CSH above other measures, such as 1/COV (coefficient of variation), is the possibility to measure or normalize AUC-CSH in different ways. CONCLUSION: AUC-CSH might be used as a quantitative index of heterogeneity in tracer uptake. In response monitoring studies it can be used to address heterogeneity in response
    corecore