6 research outputs found

    Tuning Molecular-Level Polymer Conformations Enables Dynamic Control over Both the Interfacial Behaviors of Ag Nanocubes and Their Assembled Metacrystals

    No full text
    In surface chemistry-directed nanoparticle self-assembly, it remains challenging to continuously modulate nanoparticle behavior at the oil/water interface without replacing surface functionality or particle morphology. Here, we utilize solvent-tunable molecular-level polymer conformation changes to achieve “multiple metacrystals using one nanoparticle with one chemical functionality”. We use Ag nanocubes functionalized with a mixed monolayer of thiol-terminated poly­(ethylene glycol) (PEG) and hexade­cane­thiol (C16). We continuously modulate PEG conformation from swollen to coiled states by decreasing solvent polarity, whereas C16 promotes nanocube dispersion in organic carrier solvents. Such PEG conformation changes drive Ag nanocubes to adopt tilted, standing, and planar configurations at the oil/water interface, with their interfacial positions changing from halfway across the interface to almost immersed within the oil phase. We also identify four specific polarities which enable Ag nanocubes to assemble into large-area metacrystals with linear, hexagonal, and square close-packed lattices. Our work establishes an innovative strategy to achieve robust tunability of nanoparticle interfacial behavior and unprecedented modulation of metacrystal structure

    Transformative Two-Dimensional Array Configurations by Geometrical Shape-Shifting Protein Microstructures

    No full text
    Two-dimensional (2D) geometrical shape-shifting is prevalent in nature, but remains challenging in man-made “smart” materials, which are typically limited to single-direction responses. Here, we fabricate geometrical shape-shifting bovine serum albumin (BSA) microstructures to achieve circle-to-polygon and polygon-to-circle geometrical transformations. In addition, transformative two-dimensional microstructure arrays are demonstrated by the ensemble of these responsive microstructures to confer structure-to-function properties. The design strategy of our geometrical shape-shifting microstructures focuses on embedding precisely positioned rigid skeletal frames within responsive BSA matrices to direct their anisotropic swelling under pH stimulus. This is achieved using layer-by-layer two photon lithography, which is a direct laser writing technique capable of rendering spatial resolution in the sub-micrometer length scale. By controlling the shape, orientation and number of the embedded skeletal frames, we have demonstrated well-defined arc-to-corner and corner-to-arc transformations, which are essential for dynamic circle-to-polygon and polygon-to-circle shape-shifting, respectively. We further fabricate our shape-shifting microstructures in periodic arrays to experimentally demonstrate the first transformative 2D patterned arrays. Such versatile array configuration transformations give rise to structure-to-physical properties, including array porosity and pore shape, which are crucial for the development of on-demand multifunctional “smart” materials, especially in the field of photonics and microfluidics

    Transformative Two-Dimensional Array Configurations by Geometrical Shape-Shifting Protein Microstructures

    No full text
    Two-dimensional (2D) geometrical shape-shifting is prevalent in nature, but remains challenging in man-made “smart” materials, which are typically limited to single-direction responses. Here, we fabricate geometrical shape-shifting bovine serum albumin (BSA) microstructures to achieve circle-to-polygon and polygon-to-circle geometrical transformations. In addition, transformative two-dimensional microstructure arrays are demonstrated by the ensemble of these responsive microstructures to confer structure-to-function properties. The design strategy of our geometrical shape-shifting microstructures focuses on embedding precisely positioned rigid skeletal frames within responsive BSA matrices to direct their anisotropic swelling under pH stimulus. This is achieved using layer-by-layer two photon lithography, which is a direct laser writing technique capable of rendering spatial resolution in the sub-micrometer length scale. By controlling the shape, orientation and number of the embedded skeletal frames, we have demonstrated well-defined arc-to-corner and corner-to-arc transformations, which are essential for dynamic circle-to-polygon and polygon-to-circle shape-shifting, respectively. We further fabricate our shape-shifting microstructures in periodic arrays to experimentally demonstrate the first transformative 2D patterned arrays. Such versatile array configuration transformations give rise to structure-to-physical properties, including array porosity and pore shape, which are crucial for the development of on-demand multifunctional “smart” materials, especially in the field of photonics and microfluidics

    Formulating an Ideal Protein Photoresist for Fabricating Dynamic Microstructures with High Aspect Ratios and Uniform Responsiveness

    No full text
    The physical properties of aqueous-based stimuli-responsive photoresists are crucial in fabricating microstructures with high structural integrity and uniform responsiveness during two-photon lithography. Here, we quantitatively investigate how various components within bovine serum albumin (BSA) photoresists affect our ability to achieve BSA microstructures with consistent stimuli-responsive properties over areas exceeding 10<sup>4</sup> μm<sup>2</sup>. We unveil a relationship between BSA concentration and dynamic viscosity, establishing a threshold viscosity to achieve robust BSA microstructures. We also demonstrate the addition of an inert polymer to the photoresist as viscosity enhancer. A set of systematically optimized processing parameters is derived for the construction of dynamic BSA microstructures. The optimized BSA photoresists and processing parameters enable us to extend the two-dimensional (2D) microstructures to three-dimensional (3D) ones, culminating in arrays of micropillars with aspect ratio > 10. Our findings foster the development of liquid stimuli-responsive photoresists to build multifunctional complex 3D geometries for applications such as bioimplantable devices or adaptive photonic systems

    Redox-Responsive Hyperbranched Poly(amido amine)s with Tertiary Amino Cores for Gene Delivery

    No full text
    Redox-responsive hyperbranched poly­(amido amine)­s (PAAs) with tertiary amino cores and amine, poly­(ethylene glycol) (PEG) and hydroxyl terminal groups were prepared for DNA delivery respectively. The DNA condensation capability of PAAs was investigated using gel electrophoresis, and the results showed that PAA terminated with 1-(2-aminoethyl)­piperazine (AEPZ) (BAA) is the most efficient in binding plasmid DNA (pDNA). The diameter and zeta-potential of polyplexes from PAAs were characterized using dynamic light scattering (DLS), and the morphology of the polyplexes was obtained using atomic force microscopy (AFM). All the PAAs were able to condense pDNA into nanoparticles with diameters between 50 and 200 nm with a positive surface charge when the weight ratio of polymer/DNA was higher than 20. Glutathione (GSH)-induced DNA release from polyplexes and the buffering capability of PAAs were investigated as well. Cytotoxicity of PAAs and <i>in vitro</i> gene transfection of polyplexes were evaluated in HEK293, COS-7, MCF-7 and Hep G2 cell lines, respectively. The results reflect that PAAs show remarkably low or even no cytotoxicity, and that PAA with amino terminal groups mediates the most efficient gene transfection with the transfection efficiency comparable to that of 25 kDa polyethylenimine. Further the effects of the presence of buthionine sulfoximine (BSO) on the transfection efficiency and cytotoxicity of BAA polyplexes were investigated

    Direct Metal Writing and Precise Positioning of Gold Nanoparticles within Microfluidic Channels for SERS Sensing of Gaseous Analytes

    No full text
    We demonstrate a one-step precise direct metal writing of well-defined and densely packed gold nanoparticle (AuNP) patterns with tunable physical and optical properties. We achieve this by using two-photon lithography on a Au precursor comprising poly­(vinylpyrrolidone) (PVP) and ethylene glycol (EG), where EG promotes higher reduction rates of Au­(III) salt via polyol reduction. Hence, clusters of monodisperse AuNP are generated along raster scanning of the laser, forming high-particle-density, well-defined structures. By varying the PVP concentration, we tune the AuNP size from 27.3 to 65.0 nm and the density from 172 to 965 particles/μm<sup>2</sup>, corresponding to a surface roughness of 12.9 to 67.1 nm, which is important for surface-based applications such as surface-enhanced Raman scattering (SERS). We find that the microstructures exhibit an SERS enhancement factor of >10<sup>5</sup> and demonstrate remote writing of well-defined Au microstructures within a microfluidic channel for the SERS detection of gaseous molecules. We showcase in situ SERS monitoring of gaseous 4-methylbenzenethiol and real-time detection of multiple small gaseous species with no specific affinity to Au. This one-step, laser-induced fabrication of AuNP microstructures ignites a plethora of possibilities to position desired patterns directly onto or within most surfaces for the future creation of multifunctional lab-on-a-chip devices
    corecore