10,138 research outputs found
Pricing for Online Resource Allocation: Intervals and Paths
We present pricing mechanisms for several online resource allocation problems
which obtain tight or nearly tight approximations to social welfare. In our
settings, buyers arrive online and purchase bundles of items; buyers' values
for the bundles are drawn from known distributions. This problem is closely
related to the so-called prophet-inequality of Krengel and Sucheston and its
extensions in recent literature. Motivated by applications to cloud economics,
we consider two kinds of buyer preferences. In the first, items correspond to
different units of time at which a resource is available; the items are
arranged in a total order and buyers desire intervals of items. The second
corresponds to bandwidth allocation over a tree network; the items are edges in
the network and buyers desire paths.
Because buyers' preferences have complementarities in the settings we
consider, recent constant-factor approximations via item prices do not apply,
and indeed strong negative results are known. We develop static, anonymous
bundle pricing mechanisms.
For the interval preferences setting, we show that static, anonymous bundle
pricings achieve a sublogarithmic competitive ratio, which is optimal (within
constant factors) over the class of all online allocation algorithms, truthful
or not. For the path preferences setting, we obtain a nearly-tight logarithmic
competitive ratio. Both of these results exhibit an exponential improvement
over item pricings for these settings. Our results extend to settings where the
seller has multiple copies of each item, with the competitive ratio decreasing
linearly with supply. Such a gradual tradeoff between supply and the
competitive ratio for welfare was previously known only for the single item
prophet inequality
Box Drawings for Learning with Imbalanced Data
The vast majority of real world classification problems are imbalanced,
meaning there are far fewer data from the class of interest (the positive
class) than from other classes. We propose two machine learning algorithms to
handle highly imbalanced classification problems. The classifiers constructed
by both methods are created as unions of parallel axis rectangles around the
positive examples, and thus have the benefit of being interpretable. The first
algorithm uses mixed integer programming to optimize a weighted balance between
positive and negative class accuracies. Regularization is introduced to improve
generalization performance. The second method uses an approximation in order to
assist with scalability. Specifically, it follows a \textit{characterize then
discriminate} approach, where the positive class is characterized first by
boxes, and then each box boundary becomes a separate discriminative classifier.
This method has the computational advantages that it can be easily
parallelized, and considers only the relevant regions of feature space
Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis.
Chronic pancreatitis (CP) is a progressive and irreversible inflammatory and fibrotic disease with no cure. Unlike acute pancreatitis (AP), we find that alternatively activated macrophages (AAMs) are dominant in mouse and human CP. AAMs are dependent on interleukin (IL)-4 and IL-13 signalling, and we show that mice lacking IL-4Rα, myeloid-specific IL-4Rα and IL-4/IL-13 were less susceptible to pancreatic fibrosis. Furthermore, we demonstrate that mouse and human pancreatic stellate cells (PSCs) are a source of IL-4/IL-13. Notably, we show that pharmacologic inhibition of IL-4/IL-13 in human ex vivo studies as well as in established mouse CP decreases pancreatic AAMs and fibrosis. We identify a critical role for macrophages in pancreatic fibrosis and in turn PSCs as important inducers of macrophage-alternative activation. Our study challenges and identifies pathways involved in crosstalk between macrophages and PSCs that can be targeted to reverse or halt pancreatic fibrosis progression
Information Fusion via Symbolic Regression: A Tutorial in the Context of Human Health
This tutorial paper provides a general overview of symbolic regression (SR)
with specific focus on standards of interpretability. We posit that
interpretable modeling, although its definition is still disputed in the
literature, is a practical way to support the evaluation of successful
information fusion. In order to convey the benefits of SR as a modeling
technique, we demonstrate an application within the field of health and
nutrition using publicly available National Health and Nutrition Examination
Survey (NHANES) data from the Centers for Disease Control and Prevention (CDC),
fusing together anthropometric markers into a simple mathematical expression to
estimate body fat percentage. We discuss the advantages and challenges
associated with SR modeling and provide qualitative and quantitative analyses
of the learned models
Disruption of nNOS-NOS1AP protein-protein interactions suppresses neuropathic pain in mice
Elevated N-methyl-D-aspartate receptor (NMDAR) activity is linked to central sensitization and chronic pain. However, NMDAR antagonists display limited therapeutic potential because of their adverse side effects. Novel approaches targeting the NR2B-PSD95-nNOS complex to disrupt signaling pathways downstream of NMDARs show efficacy in preclinical pain models. Here, we evaluated the involvement of interactions between neuronal nitric oxide synthase (nNOS) and the nitric oxide synthase 1 adaptor protein (NOS1AP) in pronociceptive signaling and neuropathic pain. TAT-GESV, a peptide inhibitor of the nNOS-NOS1AP complex, disrupted the in vitro binding between nNOS and its downstream protein partner NOS1AP but not its upstream protein partner postsynaptic density 95 kDa (PSD95). Putative inactive peptides (TAT-cp4GESV and TAT-GESVΔ1) failed to do so. Only the active peptide protected primary cortical neurons from glutamate/glycine-induced excitotoxicity. TAT-GESV, administered intrathecally (i.t.), suppressed mechanical and cold allodynia induced by either the chemotherapeutic agent paclitaxel or a traumatic nerve injury induced by partial sciatic nerve ligation. TAT-GESV also blocked the paclitaxel-induced phosphorylation at Ser15 of p53, a substrate of p38 MAPK. Finally, TAT-GESV (i.t.) did not induce NMDAR-mediated motor ataxia in the rotarod test and did not alter basal nociceptive thresholds in the radiant heat tail-flick test. These observations support the hypothesis that antiallodynic efficacy of an nNOS-NOS1AP disruptor may result, at least in part, from blockade of p38 MAPK-mediated downstream effects. Our studies demonstrate, for the first time, that disrupting nNOS-NOS1AP protein-protein interactions attenuates mechanistically distinct forms of neuropathic pain without unwanted motor ataxic effects of NMDAR antagonists
Effects of State Sales Tax on GDP Per Capita: A Statewide Study for the United States
Economists have viewed the relationship between the impact of taxes on the GDP, however research
dealing with the sales tax rate and the GDP have yet to be analyzed to the extent that income taxes have
been investigated. In an effort to fill this void, we examine how the state sales tax rate across all fifty
states within the United States impact the corresponding state’s real GDP per capita. There will be a
simple regression model along with additional multiple regressions to analyze the impact of the state sales
tax rate on the state’s economy. As a result of this investigation, the R-squared value increased
dramatically from the initial simple regression to the last multiple regression model, as well as the
statistical significance of certain explanatory variables, including the state sales tax rate
- …