30 research outputs found

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Hemoptysis secondary to actinomycosis: A rare presentation

    No full text
    We present a 70-year-old female patient who had the history of hypertension and presented with massive haemoptysis. She had been complaining of cough with expectoration and mild streaking of blood in sputum for about 3 days with only crepts in right infrascapular and infra-axillary regions as positive clinical findings. Bronchoscopy revealed a cauliflower-like lesion in the upper- right lobe bronchus; bronchial aspirate showed occasional colonies of gram positive filamentous bacteria surrounded by neutrophils. The Trucut biopsy showed sheets of neutrophils with colonies of filamentous bacteria consistent with actinomycotic infection. She was started on intravenous benzyl penicillin 20 million units 6 hourly. She recovered with no further bouts of hemoptysis and was discharged on amoxicillin + clavulanic acid in a stable condition and she remained under similar condition for more than a year on follow up. Actinomycosis is a rare disease caused by a harmless commensal species, Actinomyces. Diagnosis of actinomycosis is a challenging situation, and more so, very few cases causing hemoptysis have come to light so far

    Removal of self expandable metallic airway stent: A rare case report

    No full text
    Covered self expandable metallic airway stents (SEMS) have been used for benign tracheal stenosis, post intubation tracheal stenosis, tracheal burn or trauma, tracheo-broncho-malacia, and extrinsic compression of trachea. Their placement is considered to be permanent, with open surgery the only way to remove the stent, though there are few cases reports of their removal with the bronchoscope, but the complications after their removal are very high. In our patient, one and a half years after placement of SEMS, she developed cough with dyspnoea, video bronchoscopy showed stenosis above the level of stent with granulation tissue inside the stent, stent fracture in lower part and stent migration to right main bronchus, thus she had all conceivable complications of stent placement. The stent was removed with the help of rigid bronchoscope under general anaesthesia. She was discharged the following day. The case is being reported because it was unique in having all the possible complications of stent placement, and rare as we could take out the stent in Toto. Thirdly, the stent could be removed without any complication

    Distributed parameter detection in massive MIMO wireless sensor networks relying on imperfect CSI

    No full text
    Distributed parameter detection is conceived for massive multiple-input multiple-output (MIMO) wireless sensor networks (WSNs), where multiple sensors collaborate to detect the presence/ absence of a spatially correlated parameter. Neyman-Pearson (NP) and generalized likelihood ratio test (GLRT)-based detectors are developed at the fusion center (FC) for known and unknown parameter detection scenarios, respectively. More explicitly, the GLRT detector also has to estimate the unknown parameter value. Closed-form expressions are derived for the probabilities of detection (PD) and false alarm (PFA) in order to characterize the performance of the proposed schemes. Furthermore, the optimal sensor transmit gains are determined for maximising the detection performance attained. An asymptotic performance analysis is carried out for determining the gain scaling laws for the massive MIMO WSN considered, when the number of antennas tends to infinity. The proposed framework is also extended to the realistic imperfect channel knowledge scenario at the FC, followed by the development of the associated fusion rules and analytical results to characterize the performance. Our simulation results closely tally the theoretical findings

    Decision Fusion in Centralized and Distributed Multiuser Millimeter-Wave Massive MIMO-OFDM Sensor Networks

    No full text
    Low-complexity fusion rules relying on hybrid combining are proposed for decision fusion in frequency selective millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) sensor networks (SNs). Both centralized (C-MIMO) and distributed (D-MIMO) antenna architectures are considered, where the error-prone local sensor decisions are transmitted over orthogonal subcarriers to a fusion center (FC) employing a large antenna array. Fusion rules are designed for the FC, followed by closed-form expressions of the false alarm and detection probabilities to comprehensively characterize the performance of distributed detection. Furthermore, efficient transmit signaling vectors are designed for optimizing the detection performance. Both the asymptotic performance analysis and the pertinent power reduction laws are presented for the large antenna regime considering both the C-MIMO and D-MIMO topologies, which potentially lead to a significant transmit power reduction. Low-complexity fusion rules and their analyses are also given for the realistic scenario of incorporating channel state information (CSI) uncertainty, where the sparse Bayesian learning (SBL) framework is utilized for the estimation of the sparse frequency selective mmWave massive MIMO channel. Finally, the performance of the proposed low-complexity detectors is characterized through extensive simulation results for different scenarios
    corecore