10,595 research outputs found
Registration and rectification needs of geology
Geologic applications of remotely sensed imaging encompass five areas of interest. The five areas include: (1) enhancement and analysis of individual images; (2) work with small area mosaics of imagery which have been map projection rectified to individual quadrangles; (3) development of large area mosaics of multiple images for several counties or states; (4) registration of multitemporal images; and (5) data integration from several sensors and map sources. Examples for each of these types of applications are summarized
Recommended from our members
Techniques for the dynamic randomization of network attributes
Critical infrastructure control systems continue to foster predictable communication paths and static configurations that allow easy access to our networked critical infrastructure around the world. This makes them attractive and easy targets for cyber-attack. We have developed technologies that address these attack vectors by automatically reconfiguring network settings. Applying these protective measures will convert control systems into «moving targets» that proactively defend themselves against attack. This «Moving Target Defense» (MTD) revolves about the movement of network reconfiguration, securely communicating reconfiguration specifications to other network nodes as required, and ensuring that connectivity between nodes is uninterrupted. Software-defined Networking (SDN) is leveraged to meet many of these goals. Our MTD approach eliminates adversaries targeting known static attributes of network devices and systems, and consists of the following three techniques: (1) Network Randomization for TCP/UDP Ports; (2) Network Randomization for IP Addresses; (3) Network Randomization for Network Paths In this paper, we describe the implementation of the aforementioned technologies. We also discuss the individual and collective successes for the techniques, challenges for deployment, constraints and assumptions, and the performance implications for each technique
Discontinuous Almost Automorphic Functions and Almost Automorphic Solutions of Differential Equations with Piecewise Constant Argument
In this article we introduce a class of discontinuous almost automorphic
functions which appears naturally in the study of almost automorphic solutions
of differential equations with piecewise constant argument. Their fundamental
properties are used to prove the almost automorphicity of bounded solutions of
a system of differential equations with piecewise constant argument. Due to the
strong discrete character of these equations, the existence of a unique
discrete almost automorphic solution of a non-autonomous almost automorphic
difference system is obtained, for which conditions of exponential dichotomy
and discrete Bi-almost automorphicity are fundamental
Concept for passive system to control gas flow independently of temperature
Volumetric flow rate of gas is maintained at a constant value independent of temperature by passing the gas through a parallel or series combination of turbulent flow and laminar flow restrictors. By proper combination of restrictors, the flow rate may be automatically made to vary as an increasing or decreasing function of temperature
Charm Meson Mixing: An Experimental Review
We review current experimental results on charm mixing and CP violation. We
survey experimental techniques, including time-dependent, time-independent, and
quantum-correlated measurements. We review techniques that use a slow pion tag
from D*+ --> pi+ D0 + c.c. decays and those that do not, and cover two-body and
multi-body D0 decay modes. We provide a summary of D-mixing results to date and
comment on future experimental prospects at the LHC and other new or planned
facilities.Comment: 53 pages, 29 figures, 8 table
Recommended from our members
Two-fluid temperature-dependent relativistic waves in magnetized streaming pair plasmas
A relativistic two-fluid temperature-dependent approach for a streaming magnetized pair plasma is considered. Such a scenario corresponds to secondary plasmas created at the polar caps of pulsar magnetospheres. In the model the generalized vorticity rather than the magnetic field is frozen into the fluid. For parallel propagation four transverse modes are found. Two are electromagnetic plasma modes which at high temperature become light waves. The remaining two are Alfveacutenic modes split into a fast and slow mode. The slow mode is cyclotron two-stream unstable at large wavelengths and is always subluminous. We find that the instability cannot be suppressed by temperature effects in the limit of large (finite) magnetic field. The fast Alfveacuten mode can be superluminous only at large wavelengths, however it is always subluminous at high temperatures. In this incompressible approximation only the ordinary mode is present for perpendicular propagation. For oblique propagation the dispersion relation is studied for finite and large strong magnetic fields and the results are qualitatively described.Institute for Fusion Studie
- …