11 research outputs found

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Comparative Effectiveness of the Core Components of Cardiac Rehabilitation on Mortality and Morbidity: A Systematic Review and Network Meta-Analysis

    No full text
    A systematic review and network meta-analysis (NMA) of randomized controlled trials (RCTs) evaluating the core components of cardiac rehabilitation (CR), nutritional counseling (NC), risk factor modification (RFM), psychosocial management (PM), patient education (PE), and exercise training (ET)) was undertaken. Published RCTs were identified from database inception dates to April 2017, and risk of bias assessed using Cochrane’s tool. Endpoints included mortality (all-cause and cardiovascular (CV)) and morbidity (fatal and non-fatal myocardial infarction (MI), coronary artery bypass surgery (CABG), percutaneous coronary intervention (PCI), and hospitalization (all-cause and CV)). Meta-regression models decomposed treatment effects into the main effects of core components, and two-way or all-way interactions between them. Ultimately, 148 RCTs (50,965 participants) were included. Main effects models were best fitting for mortality (e.g., for all-cause, specifically PM (hazard ratio HR = 0.68, 95% credible interval CrI = 0.54⁻0.85) and ET (HR = 0.75, 95% CrI = 0.60⁻0.92) components effective), MI (e.g., for all-cause, specifically PM (hazard ratio HR = 0.76, 95% credible interval CrI = 0.57⁻0.99), ET (HR = 0.75, 95% CrI = 0.56⁻0.99) and PE (HR = 0.68, 95% CrI = 0.47⁻0.99) components effective) and hospitalization (e.g., all-cause, PM (HR = 0.76, 95% CrI = 0.58⁻0.96) effective). For revascularization (including CABG and PCI individually), the full interaction model was best-fitting. Given that each component, individual or in combination, was associated with mortality and/or morbidity, recommendations for comprehensive CR are warranted
    corecore