2,009 research outputs found

    Near-Infrared Accretion Signatures from the Circumbinary Planetary-Mass Companion Delorme 1 (ab)b

    Get PDF
    Accretion signatures from bound brown dwarf and protoplanetary companions provide evidence for ongoing planet formation, and accreting substellar objects have enabled new avenues to study the astrophysical mechanisms controlling the formation and accretion processes. Delorme 1 (AB)b, a ?1/430-45 Myr circumbinary planetary-mass companion, was recently discovered to exhibit strong Hα emission. This suggests ongoing accretion from a circumplanetary disk, somewhat surprising given canonical gas disk dispersal timescales of 5-10 Myr. Here, we present the first NIR detection of accretion from the companion in Paβ, Pa?3, and Br?3 emission lines from SOAR/TripleSpec 4.1, confirming and further informing its accreting nature. The companion shows strong line emission, with L line ≈ 1-6 × 10-8 L ? across lines and epochs, while the binary host system shows no NIR hydrogen line emission (L line \u3c 0.32-11 × 10-7 L ?). Observed NIR hydrogen line ratios are more consistent with a planetary accretion shock than with local line excitation models commonly used to interpret stellar magnetospheric accretion. Using planetary accretion shock models, we derive mass accretion rate estimates of Ṁpla?1/43 -4 × 10-8 M J yr-1, somewhat higher than expected under the standard star formation paradigm. Delorme 1 (AB)b\u27s high accretion rate is perhaps more consistent with formation via disk fragmentation. Delorme 1 (AB)b is the first protoplanet candidate with clear (signal-to-noise ratio ?1/45) NIR hydrogen line emission

    Relativistic Effect on Low-Energy Nucleon-Deuteron Scattering

    Full text link
    The relativistic effect on differential cross sections, nucleon-to-nucleon and nucleon-to-deuteron polarization transfer coefficients, and the spin correlation function, of nucleon-deuteron elastic scattering is investigated employing several three-dimensional relativistic three-body equations and several nucleon-nucleon potentials. The polarization transfer coefficients are found to be sensitive to the details of the nucleon-nucleon potentials and the relativistic dynamics employed, and prefer trinucleon models with the correct triton binding energy. (To appear in Phys. Rev. C)Comment: pages: 21, LaTex text + 7 ps-figures at the en

    Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling

    Get PDF
    High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres.Comment: 16 pages, 4 figure

    The 10 Meter South Pole Telescope

    Full text link
    The South Pole Telescope (SPT) is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, multi-color, millimeter-wave, bolometer camera. It is located at the Amundsen-Scott South Pole station in Antarctica. The design of the SPT emphasizes careful control of spillover and scattering, to minimize noise and false signals due to ground pickup. The key initial project is a large-area survey at wavelengths of 3, 2 and 1.3 mm, to detect clusters of galaxies via the Sunyaev-Zeldovich effect and to measure the small-scale angular power spectrum of the cosmic microwave background (CMB). The data will be used to characterize the primordial matter power spectrum and to place constraints on the equation of state of dark energy. A second-generation camera will measure the polarization of the CMB, potentially leading to constraints on the neutrino mass and the energy scale of inflation.Comment: 47 pages, 14 figures, updated to match version to be published in PASP 123 903 (May, 2011

    Measurement of the Omega_c Lifetime

    Full text link
    We present the measurement of the lifetime of the Omega_c we have performed using three independent data samples from two different decay modes. Using a Sigma- beam of 340 GeV/c we have obtained clean signals for the Omega_c decaying into Xi- K- pi+ pi+ and Omega- pi+ pi- pi+, avoiding topological cuts normally used in charm analysis. The short but measurable lifetime of the Omega_c is demonstrated by a clear enhancement of the signals at short but finite decay lengths. Using a continuous maximum likelihood method we determined the lifetime to be tau(Omega_c) = 55 +13-11(stat) +18-23(syst) fs. This makes the Omega_c the shortest living weakly decaying particle observed so far. The short value of the lifetime confirms the predicted pattern of the charmed baryon lifetimes and demonstrates that the strong interaction plays a vital role in the lifetimes of charmed hadrons.Comment: 15 pages, including 7 figures; gzipped, uuencoded postscrip

    The acceleration and storage of radioactive ions for a neutrino factory

    Full text link
    The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for 6He and 60 for 18Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.Comment: Accepted for publication in proceedings of Nufact02, London, 200

    Search for the exotic Ξ(1860)\Xi^{--}(1860) Resonance in 340GeV/c Σ\Sigma^--Nucleus Interactions

    Full text link
    We report on a high statistics search for the Ξ(1860)\Xi^{--}(1860) resonance in Σ\Sigma^--nucleus collisions at 340GeV/c. No evidence for this resonance is found in our data sample which contains 676000 Ξ\Xi^- candidates above background. For the decay channel Ξ(1860)Ξπ\Xi^{--}(1860) \to \Xi^-\pi^- and the kinematic range 0.15<xF<<x_F<0.9 we find a 3σ\sigma upper limit for the production cross section of 3.1 and 3.5 μ\mub per nucleon for reactions with carbon and copper, respectively.Comment: 5 pages, 4 figures, modification of ref. 43 and 4
    corecore