213 research outputs found

    INFLUENCE OF PREPARATION PROCESS ON PHYSICAL PROPERTIES AND DEVITRIFICATION OF Li2B2O4 (0,9) LiFe5O8 (0,1) GLASSES

    No full text
    Double roller quenching of Li2B2O4(0.9)-LiFe5O8(0.1) has been performed with various melt temperatures and roller speeds. The changes in physical properties or in the devitrification process of the amorphous samples are shown to be related to the LiFe5O8 content variations or to the Fe2+ appearance but not to structural changes of the amorphous state due to preparation processe

    Constrained and unconstrained stable discrete minimizations for p-robust local reconstructions in vertex patches in the De Rham complex

    Get PDF
    We analyze constrained and unconstrained minimization problems on patches of tetrahedra sharing a common vertex with discontinuous piecewise polynomial data of degree p. We show that the discrete minimizers in the spaces of piecewise polynomials of degree p conforming in the H1, H(curl), or H(div) spaces are as good as the minimizers in these entire (infinite-dimensional) Sobolev spaces, up to a constant that is independent of p. These results are useful in the analysis and design of finite element methods, namely for devising stable local commuting projectors and establishing local-best/global-best equivalences in a priori analysis and in the context of a posteriori error estimation. Unconstrained minimization in H1 and constrained minimization in H(div) have been previously treated in the literature. Along with improvement of the results in the H1 and H(div) cases, our key contribution is the treatment of the H(curl) framework. This enables us to cover the whole De Rham diagram in three space dimensions in a single setting

    p-robust equilibrated flux reconstruction in H(curl) based on local minimizations. Application to a posteriori analysis of the curl-curl problem

    Get PDF
    We present a local construction of H(curl)-conforming piecewise polynomials satisfying a prescribed curl constraint. We start from a piecewise polynomial not contained in the H(curl) space but satisfying a suitable orthogonality property. The procedure employs minimizations in vertex patches and the outcome is, up to a generic constant independent of the underlying polynomial degree, as accurate as the best-approximations over the entire local versions of H(curl). This allows to design guaranteed, fully computable, constant-free, and polynomial-degree-robust a posteriori error estimates of Prager-Synge type for Nédélec finite element approximations of the curl-curl problem. A divergence-free decomposition of a divergence-free H(div)-conforming piecewise polynomial, relying on over-constrained minimizations in Raviart-Thomas spaces, is the key ingredient. Numerical results illustrate the theoretical developments

    Ordering intermetallic alloys by ion irradiation: a way to tailor magnetic media

    Full text link
    Combining He ion irradiation and thermal mobility below 600K, we both trigger and control the transformation from chemical disorder to order in thin films of an intermetallic ferromagnet (FePd). Kinetic Monte Carlo simulations show how the initial directional short range order determines order propagation. Magnetic ordering perpendicular to the film plane was achieved, promoting the initially weak magnetic anisotropy to the highest values known for FePd films. This post-growth treatment should find applications in ultrahigh density magnetic recording.Comment: 7 pages, 3 Figure
    • …
    corecore