479 research outputs found
Anonymous quantum communication
We present the first protocol for the anonymous transmission of a quantum
state that is information-theoretically secure against an active adversary,
without any assumption on the number of corrupt participants. The anonymity of
the sender and receiver is perfectly preserved, and the privacy of the quantum
state is protected except with exponentially small probability. Even though a
single corrupt participant can cause the protocol to abort, the quantum state
can only be destroyed with exponentially small probability: if the protocol
succeeds, the state is transferred to the receiver and otherwise it remains in
the hands of the sender (provided the receiver is honest).Comment: 11 pages, to appear in Proceedings of ASIACRYPT, 200
Making Code Voting Secure against Insider Threats using Unconditionally Secure MIX Schemes and Human PSMT Protocols
Code voting was introduced by Chaum as a solution for using a possibly
infected-by-malware device to cast a vote in an electronic voting application.
Chaum's work on code voting assumed voting codes are physically delivered to
voters using the mail system, implicitly requiring to trust the mail system.
This is not necessarily a valid assumption to make - especially if the mail
system cannot be trusted. When conspiring with the recipient of the cast
ballots, privacy is broken.
It is clear to the public that when it comes to privacy, computers and
"secure" communication over the Internet cannot fully be trusted. This
emphasizes the importance of using: (1) Unconditional security for secure
network communication. (2) Reduce reliance on untrusted computers.
In this paper we explore how to remove the mail system trust assumption in
code voting. We use PSMT protocols (SCN 2012) where with the help of visual
aids, humans can carry out addition correctly with a 99\% degree of
accuracy. We introduce an unconditionally secure MIX based on the combinatorics
of set systems.
Given that end users of our proposed voting scheme construction are humans we
\emph{cannot use} classical Secure Multi Party Computation protocols.
Our solutions are for both single and multi-seat elections achieving:
\begin{enumerate}[i)]
\item An anonymous and perfectly secure communication network secure against
a -bounded passive adversary used to deliver voting,
\item The end step of the protocol can be handled by a human to evade the
threat of malware. \end{enumerate} We do not focus on active adversaries
Universally Convertible Directed Signatures
Many variants of Chaum and van Antwerpen's undeniable signatures have been proposed to achieve specific properties desired in real-world applications of cryptography. Among them, directed signatures were introduced by Lim and Lee in 1993. Directed signatures differ from the well-known confirmer signatures in that the signer has the simultaneous abilities to confirm, deny and individually convert a signature. The universal conversion of these signatures has remained an open problem since their introduction in 1993. This paper provides a positive answer to this quest by showing a very efficient design for universally convertible directed signatures (UCDS) both in terms of computational complexity and signature size. Our construction relies on the so-called xyz-trick applicable to bilinear map groups. We define proper security notions for UCDS schemes and show that our construction is secure, in the random oracle model, under computational assumptions close to the CDH and DDH assumptions. Finally, we introduce and realize traceable universally convertible directed signatures where a master tracing key allows to link signatures to their direction
Anonymous Single-Sign-On for n designated services with traceability
Anonymous Single-Sign-On authentication schemes have been proposed to allow
users to access a service protected by a verifier without revealing their
identity which has become more important due to the introduction of strong
privacy regulations. In this paper we describe a new approach whereby anonymous
authentication to different verifiers is achieved via authorisation tags and
pseudonyms. The particular innovation of our scheme is authentication can only
occur between a user and its designated verifier for a service, and the
verification cannot be performed by any other verifier. The benefit of this
authentication approach is that it prevents information leakage of a user's
service access information, even if the verifiers for these services collude
which each other. Our scheme also supports a trusted third party who is
authorised to de-anonymise the user and reveal her whole services access
information if required. Furthermore, our scheme is lightweight because it does
not rely on attribute or policy-based signature schemes to enable access to
multiple services. The scheme's security model is given together with a
security proof, an implementation and a performance evaluation.Comment: 3
Rich Counter-Examples for Temporal-Epistemic Logic Model Checking
Model checking verifies that a model of a system satisfies a given property,
and otherwise produces a counter-example explaining the violation. The verified
properties are formally expressed in temporal logics. Some temporal logics,
such as CTL, are branching: they allow to express facts about the whole
computation tree of the model, rather than on each single linear computation.
This branching aspect is even more critical when dealing with multi-modal
logics, i.e. logics expressing facts about systems with several transition
relations. A prominent example is CTLK, a logic that reasons about temporal and
epistemic properties of multi-agent systems. In general, model checkers produce
linear counter-examples for failed properties, composed of a single computation
path of the model. But some branching properties are only poorly and partially
explained by a linear counter-example.
This paper proposes richer counter-example structures called tree-like
annotated counter-examples (TLACEs), for properties in Action-Restricted CTL
(ARCTL), an extension of CTL quantifying paths restricted in terms of actions
labeling transitions of the model. These counter-examples have a branching
structure that supports more complete description of property violations.
Elements of these counter-examples are annotated with parts of the property to
give a better understanding of their structure. Visualization and browsing of
these richer counter-examples become a critical issue, as the number of
branches and states can grow exponentially for deeply-nested properties.
This paper formally defines the structure of TLACEs, characterizes adequate
counter-examples w.r.t. models and failed properties, and gives a generation
algorithm for ARCTL properties. It also illustrates the approach with examples
in CTLK, using a reduction of CTLK to ARCTL. The proposed approach has been
implemented, first by extending the NuSMV model checker to generate and export
branching counter-examples, secondly by providing an interactive graphical
interface to visualize and browse them.Comment: In Proceedings IWIGP 2012, arXiv:1202.422
E-Voting in an ubicomp world: trust, privacy, and social implications
The advances made in technology have unchained the user from the desktop into interactions where access is anywhere, anytime. In addition, the introduction of ubiquitous computing (ubicomp) will see further changes in how we interact with technology and also socially. Ubicomp evokes a near future in which humans will be surrounded by “always-on,” unobtrusive, interconnected intelligent objects where information is exchanged seamlessly. This seamless exchange of information has vast social implications, in particular the protection and management of personal information. This research project investigates the concepts of trust and privacy issues specifically related to the exchange of e-voting information when using a ubicomp type system
Security and Privacy Issues in Wireless Mesh Networks: A Survey
This book chapter identifies various security threats in wireless mesh
network (WMN). Keeping in mind the critical requirement of security and user
privacy in WMNs, this chapter provides a comprehensive overview of various
possible attacks on different layers of the communication protocol stack for
WMNs and their corresponding defense mechanisms. First, it identifies the
security vulnerabilities in the physical, link, network, transport, application
layers. Furthermore, various possible attacks on the key management protocols,
user authentication and access control protocols, and user privacy preservation
protocols are presented. After enumerating various possible attacks, the
chapter provides a detailed discussion on various existing security mechanisms
and protocols to defend against and wherever possible prevent the possible
attacks. Comparative analyses are also presented on the security schemes with
regards to the cryptographic schemes used, key management strategies deployed,
use of any trusted third party, computation and communication overhead involved
etc. The chapter then presents a brief discussion on various trust management
approaches for WMNs since trust and reputation-based schemes are increasingly
becoming popular for enforcing security in wireless networks. A number of open
problems in security and privacy issues for WMNs are subsequently discussed
before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the
author's previous submission in arXiv submission: arXiv:1102.1226. There are
some text overlaps with the previous submissio
Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis
Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al
Polytopic Cryptanalysis
Standard differential cryptanalysis uses statistical dependencies between the difference of two plaintexts and the difference of the respective two ciphertexts to attack a cipher. Here we introduce polytopic cryptanalysis which considers interdependencies between larger sets of texts as they traverse through the cipher. We prove that the methodology of standard differential cryptanalysis can unambiguously be extended and transferred to the polytopic case including impossible differentials. We show that impossible polytopic transitions have generic advantages over impossible differentials. To demonstrate the practical relevance of the generalization, we present new low-data attacks on round-reduced DES and AES using impossible polytopic transitions that are able to compete with existing attacks, partially outperforming these
- …
